
Notes for 16 Mar (Thursday)

1 Recap

1. Proved that
∫
F

′
= F (b)−F (a), integration-by-parts for Riemann integrals as well

as for RS integrals. (The latter explains the symmetry between α and f .)

2. Defined integration of vector-valued functions. Proved that ‖
∫

~fdα‖ ≤
∫
‖~f‖dα.

3. Defined the notion of length of a curve and rectifiable curves. Proved that if γ’s

derivatives are continuous then its length is

∫ b

a

‖γ′‖dt.

2 Sequences and series of functions

Suppose we have a sequence of functions (for example, suppose we are trying to solve a dif-
ferential equation by means of an iterative procedure on a computer) fn(x) : E ⊂ R→ C.
(By the way, most of what I will say in this setting goes through for metric spaces.) What
should it mean for fn → f for some function f ? Likewise, if one consider

∑
fn what

does it mean for it to converge to some function g ?
The simplest notion is that of “pointwise convergence”. This means that f(x) = limn→∞ fn(x)
for all x ∈ E. But this notion is not good enough for most purposes. For instance, suppose
fn(x) are all continuous, i.e., limy→x fn(y) = fn(x). Then is f(x) also continuous? i.e., is
limy→x f(y) = limy→x limn→∞ fn(y) = limn→∞ limy→x fn(y) = f(x) ? Unfortunately, the
order of limits, differentiation, and integration cannot be interchanged in general. The
following counterexamples demonstrate this phenomenon.

1. Let sm,n = m
m+n

. Then if you fix n, limm→∞ sm,n = 1. Thus limn→∞ limm→∞ sm,n =
1. But the other limit is 0.

2. Take fn(x) = xn on [0, 1]. Let f(x) = 0 when x < 1 and f(1) = 1. fn(x) → f(x)
pointwise. fn(x) is continuous but f isn’t.

3. Let fm(x) = limn→∞(cosm!πx)2n. Note that if m!x is an integer, then fm(x) = 1,
otherwise it is 0. Note that fm are Riemann integrable. Let f(x) = limm→∞ fm(x).
Note that if x is a rational then f(x) = 1. Otherwise, it is 0. This function is
discontinuous everywhere. It is not Riemann integrable (U-L=1 for any partition.)
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4. Let fn(x) = sin(nx)√
n

. Note that fn(x) → f(x) where f(x) = 0 for all x. f
′
n(x) =√

n cos(nx). When x = 0 it goes to ∞.

5. Let fn(x) = n2x(1− x2)n. Note that fn(x)→ f(x) where f(x) = 0 for |x| ≤ 1 by a

theorem we proved earlier (or L’Hospital if you prefer). Note that
∫ 1

0
f(x)dx = 0.

Now
∫ 1

0
fn(x)dx = n2

2n+2
which goes to ∞.

3 Uniform convergence

Clearly what is going wrong in the above examples is the following : Suppose you take
sn,m, it is true that as m → ∞, sn,m gets close to some number an but the problem is
how fast is it getting close ? In particular, does the speed of convergence depend on n?

To fix these issues, we define the notion of uniform convergence. We say that a
sequence of functions fn : E → (X, d) converges uniformly to f if for every ε > 0 there
exists an N such that n > N implies that d(fn(x), f(x)) < ε for all x ∈ E. In particular,
this implies that fn(x)→ f(x) for every x, i.e., fn definitely converge pointwise. Likewise,
we say that a series

∑
fi(x) of real-valued functions converges uniformly to s(x) if for

every ε > 0 ∃ N s.t. n > N ⇒ |
∑n

i=1 fi(x) − s(x)| < ε ∀ x ∈ E. From now onwards,
we shall deal only with real-valued functions although many of these concepts readily
generalise to metric spaces.

There is a Cauchy criterion for uniform convergence too :

Theorem 1. The sequence of functions fn(x) defined on E converges uniformly o E iff
for every ε > 0 there is an N such that m,n > N implies that |fm(x)− fn(x)| < ε for all
x ∈ E.

Proof. Suppose fn converges uniformly to f . Then choose N s.t n > N implies that
|fn(x)− f(x)| < ε/2. Thus |fm(x)− fn(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ε.
Suppose the other way round holds. Then at a fixed x, since an = fn(x) is a Cauchy
sequence, it converges to a number f(x). Now choose N s.t. |fm(x) − fn(x)| < ε for
all x ∈ E and n,m > N . Now |f(x) − fn(x)| ≤ |f(x) − fm(x)| + |fm(x) − fn(x)| <
|f(x) − fm(x)| + ε for all x ∈ E and n,m > N . Now assume that n < m. Fix n, x and
tend m → ∞ to see that |f(x) − fn(x)| < ε ∀ x ∈ E and n > N . This means that fn
converges to f uniformly.

The following obvious criterion is useful - Suppose fn converges to f pointwise. Then
Mn = supx∈E |fn(x)− f(x)| converges to 0 iff fn converges to f uniformly.

There is a nice test for uniform convergence of a series of functions. It is the Weier-
strass M -test.

Theorem 2. Suppose fn is a sequence of functions defined on E, and suppose |fn(x)| ≤
Mn ∀ x ∈ E. Then

∑
fn converges uniformly if

∑
Mn converges.

Proof. Indeed if
∑
Mn converges, then it is a Cauchy sequence and hence

∑m
i=nMi < ε.

Thus |
∑m

i=n fn(x)| ≤
∑m

i=n |fn(x)| <
∑m

i=nMi < ε ∀ x ∈ E. By the Cauchy criterion this
means that

∑
fi(x) converges uniformly on E.
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4 Uniform convergence and continuity

Theorem 3. Suppose fn → f uniformly on a set E in a metric space. Let x be a limit
point of E and suppose lim

t→x
fn(t) = An. Then An converges and limt→x f(t) = limn→∞An.

That is, limt→x limn→∞ fn(t) = limn→∞ limt→x fn(t).

Proof. Suppose N is s.t. m,n > N implies that |fn(t)− fm(t)| < ε ∀ t ∈ E. Take t→ x
to get |An − Am| < ε. Thus An is Cauchy and hence converges to some real number A.
Now assume that M is so large that n > M implies that |fn(t) − f(t)| < ε ∀ t ∈ E
and that |An − A| < ε. In other words, fn(t) − ε ≤ f(t) ≤ fn(t) + ε ∀ t ∈ E. Now
suppose tk is any sequence converging to x. Then taking limits, An − ε ≤ lim inf f(tk) ≤
lim sup f(tk) ≤ An + ε. Now taking n→∞ we see that A− ε ≤ lim inf ≤ lim sup ≤ A+ ε.
Thus as ε→ 0, A = lim f(tk). Since tk is arbitrary, limt→x f(t) = A.

This implies that if fn is a sequence of continuous functions converging uniformly, then
the limit is continuous. But the converse is not true. Then example fn(x) = n2x(1−x2)n
does not converge uniformly. (This will see later on because if it did converge uniformly
then you can interchange integration and limits.) However the limit is continuous.
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