Notes for 16 Mar (Thursday)

1 Recap

- 1. Proved that $\int F' = F(b) F(a)$, integration-by-parts for Riemann integrals as well as for RS integrals. (The latter explains the symmetry between α and f.)
- 2. Defined integration of vector-valued functions. Proved that $\|\int \vec{f} d\alpha\| \leq \int \|\vec{f}\| d\alpha$.
- 3. Defined the notion of length of a curve and rectifiable curves. Proved that if γ 's derivatives are continuous then its length is $\int_{a}^{b} \|\gamma'\| dt$.

2 Sequences and series of functions

Suppose we have a sequence of functions (for example, suppose we are trying to solve a differential equation by means of an iterative procedure on a computer) $f_n(x) : E \subset \mathbb{R} \to \mathbb{C}$. (By the way, most of what I will say in this setting goes through for metric spaces.) What should it mean for $f_n \to f$ for some function f? Likewise, if one consider $\sum f_n$ what does it mean for it to converge to some function g?

The simplest notion is that of "pointwise convergence". This means that $f(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in E$. But this notion is not good enough for most purposes. For instance, suppose $f_n(x)$ are all continuous, i.e., $\lim_{y\to x} f_n(y) = f_n(x)$. Then is f(x) also continuous? i.e., is $\lim_{y\to x} f(y) = \lim_{y\to x} \lim_{n\to\infty} f_n(y) = \lim_{n\to\infty} \lim_{y\to x} f_n(y) = f(x)$? Unfortunately, the order of limits, differentiation, and integration cannot be interchanged in general. The following counterexamples demonstrate this phenomenon.

- 1. Let $s_{m,n} = \frac{m}{m+n}$. Then if you fix n, $\lim_{m\to\infty} s_{m,n} = 1$. Thus $\lim_{n\to\infty} \lim_{m\to\infty} s_{m,n} = 1$. But the other limit is 0.
- 2. Take $f_n(x) = x^n$ on [0,1]. Let f(x) = 0 when x < 1 and f(1) = 1. $f_n(x) \to f(x)$ pointwise. $f_n(x)$ is continuous but f isn't.
- 3. Let $f_m(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n}$. Note that if m!x is an integer, then $f_m(x) = 1$, otherwise it is 0. Note that f_m are Riemann integrable. Let $f(x) = \lim_{m \to \infty} f_m(x)$. Note that if x is a rational then f(x) = 1. Otherwise, it is 0. This function is discontinuous everywhere. It is not Riemann integrable (U-L=1 for any partition.)

- 4. Let $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$. Note that $f_n(x) \to f(x)$ where f(x) = 0 for all x. $f'_n(x) = \sqrt{n}\cos(nx)$. When x = 0 it goes to ∞ .
- 5. Let $f_n(x) = n^2 x (1 x^2)^n$. Note that $f_n(x) \to f(x)$ where f(x) = 0 for $|x| \le 1$ by a theorem we proved earlier (or L'Hospital if you prefer). Note that $\int_0^1 f(x) dx = 0$. Now $\int_0^1 f_n(x) dx = \frac{n^2}{2n+2}$ which goes to ∞ .

3 Uniform convergence

Clearly what is going wrong in the above examples is the following : Suppose you take $s_{n,m}$, it is true that as $m \to \infty$, $s_{n,m}$ gets close to some number a_n but the problem is how fast is it getting close ? In particular, does the speed of convergence depend on n?

To fix these issues, we define the notion of uniform convergence. We say that a sequence of functions $f_n : E \to (X, d)$ converges uniformly to f if for every $\epsilon > 0$ there exists an N such that n > N implies that $d(f_n(x), f(x)) < \epsilon$ for all $x \in E$. In particular, this implies that $f_n(x) \to f(x)$ for every x, i.e., f_n definitely converge pointwise. Likewise, we say that a series $\sum f_i(x)$ of real-valued functions converges uniformly to s(x) if for every $\epsilon > 0 \exists N$ s.t. $n > N \Rightarrow |\sum_{i=1}^n f_i(x) - s(x)| < \epsilon \forall x \in E$. From now onwards, we shall deal only with real-valued functions although many of these concepts readily generalise to metric spaces.

There is a Cauchy criterion for uniform convergence too :

Theorem 1. The sequence of functions $f_n(x)$ defined on E converges uniformly o E iff for every $\epsilon > 0$ there is an N such that m, n > N implies that $|f_m(x) - f_n(x)| < \epsilon$ for all $x \in E$.

Proof. Suppose f_n converges uniformly to f. Then choose N s.t n > N implies that $|f_n(x) - f(x)| < \epsilon/2$. Thus $|f_m(x) - f_n(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \epsilon$. Suppose the other way round holds. Then at a fixed x, since $a_n = f_n(x)$ is a Cauchy sequence, it converges to a number f(x). Now choose N s.t. $|f_m(x) - f_n(x)| < \epsilon$ for all $x \in E$ and n, m > N. Now $|f(x) - f_n(x)| \le |f(x) - f_m(x)| + |f_m(x) - f_n(x)| < |f(x) - f_m(x)| + \epsilon$ for all $x \in E$ and n, m > N. Now assume that n < m. Fix n, x and tend $m \to \infty$ to see that $|f(x) - f_n(x)| < \epsilon \forall x \in E$ and n > N. This means that f_n converges to f uniformly.

The following obvious criterion is useful - Suppose f_n converges to f pointwise. Then $M_n = \sup_{x \in E} |f_n(x) - f(x)|$ converges to 0 iff f_n converges to f uniformly.

There is a nice test for uniform convergence of a series of functions. It is the Weierstrass M-test.

Theorem 2. Suppose f_n is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n \ \forall x \in E$. Then $\sum f_n$ converges uniformly if $\sum M_n$ converges.

Proof. Indeed if $\sum M_n$ converges, then it is a Cauchy sequence and hence $\sum_{i=n}^m M_i < \epsilon$. Thus $|\sum_{i=n}^m f_n(x)| \leq \sum_{i=n}^m |f_n(x)| < \sum_{i=n}^m M_i < \epsilon \ \forall x \in E$. By the Cauchy criterion this means that $\sum f_i(x)$ converges uniformly on E.

4 Uniform convergence and continuity

Theorem 3. Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose $\lim_{t\to x} f_n(t) = A_n$. Then A_n converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$. That is, $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t)$.

Proof. Suppose N is s.t. m, n > N implies that $|f_n(t) - f_m(t)| < \epsilon \ \forall t \in E$. Take $t \to x$ to get $|A_n - A_m| < \epsilon$. Thus A_n is Cauchy and hence converges to some real number A. Now assume that M is so large that n > M implies that $|f_n(t) - f(t)| < \epsilon \ \forall t \in E$ and that $|A_n - A| < \epsilon$. In other words, $f_n(t) - \epsilon \le f(t) \le f_n(t) + \epsilon \ \forall t \in E$. Now suppose t_k is any sequence converging to x. Then taking limits, $A_n - \epsilon \le \liminf f(t_k) \le A_n + \epsilon$. Now taking $n \to \infty$ we see that $A - \epsilon \le \liminf f(t) \le A + \epsilon$. Thus as $\epsilon \to 0$, $A = \lim f(t_k)$. Since t_k is arbitrary, $\lim_{t \to x} f(t) = A$.

This implies that if f_n is a sequence of continuous functions converging uniformly, then the limit is continuous. But the converse is not true. Then example $f_n(x) = n^2 x (1-x^2)^n$ does not converge uniformly. (This will see later on because if it did converge uniformly then you can interchange integration and limits.) However the limit is continuous.