
Notes for 17 Mar (Friday)

1 Recap

1. Defined pointwise convergence. Gave a number of examples to illustrate that point-
wise convergence is not a great concept. In particular, interchanging limits with
other operations of calculus does not work for pointwise convergence.

2. Defined uniform convergence. Proved the Cauchy criterion for it.

3. Proved the Weierstrass M-test for the uniform convergence of a series of functions.

4. Proved that uniform limits of continuous functions are continuous. (But the con-
verse is not true.)

2 Uniform convergence and continuity

Theorem 1. Suppose K is compact, and

1. fn is a sequence of continuous functions on K.

2. fn → f pointwise where f is continuous.

3. fn(x) ≥ fn+1(x).

Then fn → f uniformly.

Proof. Let gn = fn− f . Let Kn ⊂ K be all x ∈ K s.t. gn(x) ≥ ε. Since gn is continuous,
Kn is closed and hence compact. Since gn ≥ gn+1, Kn+1 ⊂ Kn. Fix x ∈ K. Since
g(x) → 0, x /∈ ∩Kn. But if ∩Kn is empty, then at least one of the KN is empty.
Therefore 0 ≤ gn(x) < ε ∀ x ∈ K and n ≥ N .

Compactness is essential. For example, if fn(x) = 1
nx+1

on (0, 1), then fn(x) → 0

monotonically but the convergence is not uniform. Why not? If |fn(x)| < ε then n >
1
ε
−1
x

which of course goes to infinity as x→ 0.

Now we make a very important definition. Suppose X is a metric space, let C(X) be
the set of all complex-valued continuous bounded functions on X. (It is a huge set.) We
shall make C(X) into a metric space!! Indeed, define ‖f‖ = supx∈X |f(x)|. This is finite
by assumption. It is 0 if and only if f = 0. Note that sup |(f + g)| ≤ sup |f | + |g| ≤
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sup |f |+ sup |g|. Thus d(f, g) = ‖f − g‖ is indeed a valid metric.

One of our theorems can be written as fn → f in C(X) if and only if f converges
uniformly on X. The nice thing is that the above metric makes C(X) into a complete
metric space.

Proof. Suppose fn is a Cauchy sequence in C(X). We need to prove that it converges to
some continuous bounded function f(x) in the C(X) metric.
Indeed, sup |fn(x)−fm(x)| < ε for all n,m > N means that by the Cauchy criterion, fn(x)
uniformly converges to a function f(x). Since uniform limits of continuous functions is
continuous, so is f(x). Now |f(x) − fn(x)| < ε for n > N . Therefore |f(x)| < Mn for
all x since fn(x) is. Therefore f is bounded and continuous. Since fn → f uniformly, it
does so in C(X).

3 Uniform convergence and integration

The bottom line is that uniform limits of RS functions is RS.

Theorem 2. Let α : [a, b] → R be monotonically increasing. Suppose fn : [a, b] → C is

RS w.r.t α and fn → f uniformly on [a, b]. Then f is RS and

∫ b

a

fdα = lim
n→∞

∫ b

a

fndα.

Proof. Suppose n ≥ N is so large that |fn(x)− f(x)| < ε ∀ x ∈ [a, b]. Choose a partition
P such that U(P, fN , α) − L(P, fN , α) < ε. Now fN(x) ∈ [mi,Mi] when x ∈ [xi−1, xi].
Therefore f(x) ∈ [mi− ε,Mi+ ε] for such x. Thus U(P, f, α)−L(P, f, α) <

∑
(Mi−mi+

2ε)∆αi < ε + 2ε(α(b) − α(a)) = ε̃ which can be made arbitrarily small. Thus f is RS.

Moreover, since |
∑
f(ti)∆αi −

∫ b

a

fdα| < ε̃ for any choice of ti ∈ [xi−1, xi] and likewise

|
∑
fN(ti)∆αi−

∫ b

a

fNdα| < ε, we see that |
∫ b

a

fdα−
∫ b

a

fNdα| < ε̃+ε(α(b)−α(a))+ε = ε̂.

This means that

∫
fdα − ε̂ ≤

∫
fNdα ≤

∫
fdα + ε̂. As usual, this means (after

using lim sup and lim inf by tending N → ∞, and then ε → 0 ⇒ ε̂ → 0 we get∫
fdα = lim

∫
fNdα.

As corollary, we see that if fn are RS and
∑
fn(x) converges uniformly to f(x) then

f is RS and

∫ b

a

fdα =
∞∑
n=1

∫ b

a

fndα.

4 Uniform convergence and differentiation

Taking the example fn(x) = sin(nx)√
n

we see that fn converges uniformly to 0. Indeed,

|fn(x)| ≤ 1√
n
< ε for all x when n > 1

ε2
. However f

′
n does not converge to f

′
. So clearly

we need more than uniform convergence here. In fact, differentiation is a harder operation
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theoretically than integration. (Although for calculations, integration is obviously way
harder.)
Here is the first version of the theorem we are referring to. This version has the advantage
of having a simple(r) proof. Then we will deal with Rudin’s more general version.

Theorem 3. If fn : (a− ε, b+ ε)→ R is a sequence of functions whose derivatives exist
and are continuous on [a, b]. Suppose fn(x0) converges to some number A for some point
x0 ∈ [a, b]. If f

′
n converges uniformly on [a, b] to a function g then fn converge uniformly

on [a, b] to f such that f
′
(x) = limn→∞ f

′
n(x).

Proof. Firstly, by the fundamental theorem of calculus,

fn(x) = fn(x0) +

∫ x

x0

f
′

n(t)dt (1)

Now as |fn(x) − fm(x)| ≤
∫ x

x0

|f ′

n(t) − f ′

m(t)|dt. Since f
′
n uniformly converge, they are

uniformly Cauchy. This means that |fn(x)−fm(x)| < ε|x−x0| < ε(b−a)∀ n,m > N and
all x ∈ [a, b]. This means that fn are uniformly Cauchy and hence fn converge uniformly
to some function f .

Taking the limit as n→∞ in equation 1 we see that f(x) = A+

∫ x

x0

g(t)dt by the previous

theorem on interchange of integrals and limits. Of course this implies that A = f(x0). By
the earlier theorems, g is continuous and hence by the fundamental theorem of calculus,
f

′
(x) = g(x).

Now let us drop the assumption of continuity of f
′
n.

Theorem 4. If fn : (a− ε, b+ ε)→ R is a sequence of functions whose derivatives exist
on [a, b]. Suppose fn(x0) converges to some number A for some point x0 ∈ [a, b]. If f

′
n

converges uniformly on [a, b] to a function g then fn converge uniformly on [a, b] to f
such that f

′
(x) = limn→∞ f

′
n(x).

Proof. The only way to get derivatives into the picture without using the fundamental
theorem of calculus is to use the MVT.
Note that there exists a tn ∈ [x0, x] (or if x < x0, then [x, x0]) such that fn(x)− fn(x0) +
fm(x0)−fm(x) = (f

′
n−f

′
m)(tn,m)(x−x0). Now |fn(x)−fm(x)| ≤ |fn(x)−fn(x0)+fm(x0)−

fm(x)| + |fn(x0)− fm(x0)| < ε
2

+ |f ′
n(tn,m)− f ′

m(tn,m)|(b− a) where m,n > N such that

|fn(x0)−fm(x0)| < ε
2
. Since f

′
n converge uniformly, they are uniformly Cauchy and hence

you can assume that N is so large that n,m > N implies that |f ′
n(t)− f ′

m(t)| < ε
2(b−a) for

all t. Thus |fn(x)−fm(x)| < ε for all n,m > N . This means that fn is uniformly Cauchy
and hence converges uniformly to a continuous function f on [a, b].
The proof will be continued the next time
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