
Notes for 1 Feb Jan (Wednesday)

1 Recap

1. We finished compactness and the fact that the Heine Borel theorem implies that
compactness in Rn is equivalent to every infinite subset having a limit point.

2. We showed that every perfect set is uncountable and constructed an example (the
Cantor set) of a perfect set having no open interval in it.

3. We defined connectedness. (A set E ⊂ X is connected if and only if it canNOT
be written as a disjoint union of two relatively open subsets. For example, E =
(−∞, 1] ∪ [2,∞) is not connected because it is a disjoint union of two relatively
open subsets. (Note that (−∞, 1] is not an open subset of R but it is a relatively
open subset of E because it is equal to (−∞, 1.5) ∩ E.

2 Sequences

Firstly, recall that a sequence of elements from a setX is a map f : Z+ → X written
as x1, x2, . . .. A subsequence, written as xn1 , xn2 , . . . is a subset of a sequence where
n1 < n2 < n3 . . ., i.e., you compose f with an injective order-preserving map from Z+ to
itself.

While we will mostly be interested in sequences of real numbers, we will try to be as
general as possible and do things over general metric spaces (X, d).

A sequence xn is said to converge to an element x (written as xn → x) if for every
ε > 0 there exists a natural number Nε such that d(xn, x) < ε ∀ n > Nε. The number x is
called the limit of the sequence. If xn does not converge to anything, it is said to diverge.
(Like the themes of my lectures.) A sequence is said to be bounded if d(xn, p) < M ∀ n
for some p and M .

Here are some basic properties of convergence of sequences in general metric spaces :

1. A sequence converges to x if and only if every neighbourhood of x contains all but
finitely many terms of the sequence.
Pf : Exercise.

2. Limits are unique.
Pf : Suppose there are two limits x and y of a sequence. Then d(x, y) ≤ d(x, xn) +
d(xn, y) ∀ n. In particular, choosing n to be so large that d(xn, x), d(xn, y) < ε

2
, we

see that d(x, y) ≤ ε ∀ ε > 0. This means that d(x, y) = 0. Therefore x = y.
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3. Convergent sequences are bounded.
Pf : Exercise.

4. If E ⊂ X and x is a limit point of E, then there exists a sequence xn ∈ E such that
xn → x.
Pf : Since x is a limit point of E, for every natural n > 0, there exists a point
xn 6= x ∈ E ∩B1/n(x). This means that d(xn, x) < 1

n
∀ n > 0. Thus xn → x.

5. A sequence converges to x if and only if every subsequence converges to x.
Pf : Assume that xn → x. Suppose xmi

is a subsequence. Given ε > 0, there exists
an Nε such that d(xn, x) < ε ∀ n > Nε. In particular, there exists an Iε such that
i > Iε → mi > Nε. Therefore for all i > Iε, d(xmi

, x) < ε.
Assume that xn does not converge to x. Then there exists an ε > 0 such that there
is no Nε (no matter how large) satisfying d(xn, x) < ε ∀ n > Nε. This means that
for every natural i > 0 there exists a natural mi such that d(xmi

, x) ≥ ε. Therefore
xmi

cannot converge to x.

The last property is quite useful to prove divergence of sequences. For example, −1, 1,−1, 1, . . .
diverges.

For sequences in Rk, we have some more properties that tell us how addition and
multiplication behave with sequences. Suppose xn → x and yn → y in Rk.

1. xn + yn converges to x+ y.
Pf : Choose n to be so large (i.e. > N) that xn, yn are ε/2 close to x, y. Then
‖xn + yn − x− y‖ ≤ ‖xn − x‖+ ‖yn − y‖ < ε for all n > N .

2. αxn converges to αx.
Pf : Exercise.

3. If we are working over R, then xnyn converges to xy.
Pf : |xnyn−xy| = |xn(yn+y−y)−xy| = |xn(yn−y)+(xn−x)y| ≤ |yn−y||xn|+|xn−
x||y|. Now choose n > N such that |xn|, |y| < M and |yn− y| < ε

2M
, |xn−x| < ε

2M
.

Then |xnyn − xy| < ε.

4. xn → x if and only if each coordinate converges.
Pf : Exercise.

5. If we are working over R, then 1
yn

converges to 1
y

if y 6= 0 and yn 6= 0.

Pf: Note that | 1
yn
− 1

y
| = |y−yn

yyn
|. Since y 6= 0 and yn 6= 0, choose n > N1 to be

so large that |yn| ≥ |y| − |yn − y| ≥ |y2 |. Then | 1
yn
− 1

y
| ≤ 2

|y| |yn − y|. Now choose

n > N2 > N1 so that |yn − y| < ε |y|
2

.

3 Subsequences

Two extremely important results about subsequences are the following-

Theorem 1. 1. Every sequence pn in a compact set E ⊂ X of a metric space contains
a convergent subsequence pnk

(whose limit is in E).
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2. Every bounded sequence pn in Rk contains a convergent subsequence pnk
.

Proof. 1. Zeroethly, if pn does not consist of infinitely many distinct terms, then triv-
ially it has a convergent subsequence (Why?).
Firstly, any limit point p of the set {p1, p2, . . .} is a limit of some subsequence (thus
justifying the name “limit point”). Indeed, in every neighbourhood B1/k(p) there
exists a point pnk

6= p lying in E ∩ B1/k(p). By definition this means that pnk
→ p

as k →∞.
Secondly, suppose no point p of E is a limit point of the {p1, p2, . . .}. Then for any
p there exists a neighbourhood Brp(p) that does not contain any points of E (other
than p itself). Now E ⊂ ∪pBrp(p). Therefore by compactness, E is covered by
finitely many sets Br1(p1), Br2(p2), . . . , Brl(pl). But since E is infinite, this is not
possible. (If every neighbourhood Bri(pi) contains only point from E, namely, pi,
and these neighbourhoods cover E, then how come E has infinitely many points ?)

2. By the Weierstrass theorem, a bounded sequence has a limit point. By the above
reasoning, that limit point is indeed the limit of a subsequence. (By the way, this
theorem is sometimes called the Bolzano-Weierstrass theorem.)

Here is another (admittedly technical) theorem.

Theorem 2. The subsequential limits of a sequence {pn} in a metric space X form a
closed subspace E ⊂ X.

Proof. We just need to prove that E contains all of its limit points. Well, suppose p
is a limit point of E. This means that for every natural k > 0, the neighbourhood
B1/k(p) contains a subsequential limit lk 6= p of the sequence, i.e., pk,nm → lk as m→∞.
Intuitively, this means that there should be points of the sequence arbitrarily close to lk
(which is contained in B1/k(p). I leave it as an exercise (using the triangle inequality) to
show that this implies that there exists an element of the sequence, which we denote as
pnk

that is in B1/k(p). Thus by definition of convergence, p is the limit of the subsequence
pnk

. Hence p ∈ E.

4 Cauchy sequences and completeness

Now we shall define the notion of Cauchy sequences in general metric spaces. Indeed, pn
is said to be Cauchy if for every ε > 0 there exists an Nε such that n,m > Nε implies that
d(pn, pm) < ε, i.e., the elements get close to each other if we go far into the sequence.

We take a small digression before returning to the topic of Cauchy sequences. There
is a very convenient geometric notion that we shall use later on. If E 6= φ ⊂ X, then
let supx,y∈E d(x, y) (if it exists) is called the diameter of E and written as diam(E). If
the supremum does not exist (which can only happen if E is unbounded), then diam(E)
is said to be infinity, i.e., diam(E) = ∞. So for instance, a sequence is Cauchy if and
only if as N → ∞, the diam({pN , pN+1, . . .}) → 0. Here is a technical result about
diameters.
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Theorem 3. 1. diam(Ē) = diam(E) where recall that Ē is the closure of E (recall
further that the closure is the smallest closed set containing E and that it is simply
E along with all of its limit points).

2. IfKn is a collection of compact sets such that Kn ⊂ Kn+1 and if limn→∞ diam(Kn) =
0 then ∩Kn consists of a single point.

Proof. 1. Since E ⊂ Ē, of course diam(E) ≤ diam(Ē). So we need to prove the
opposite inequality to conclude equality. Given x, y ∈ Ē, if we manage to prove
that for every ε > 0 there exist aε, bε ∈ E such that d(x, y) ≤ d(a, b) + ε, then of
course d(x, y) ≤ diam(E) + ε ∀ ε > 0 implying that d(x, y) ≤ diam(E) ∀ x, y ∈ Ē
thus allowing us to conclude the result.
Indeed, since the closure consists of E along with its limit points, given an ε > 0
and x, y ∈ Ē, surely there exist points aε ∈ E ∩Bε/2(x) and bε ∈ E ∩Bε/2(y). Now
d(x, y) ≤ d(x, aε) + d(aε, y) ≤ d(x, aε) + d(aε, bε) + d(bε, y) < ε+ d(aε, bε)

2. By previous results, we know that ∩Kn 6= φ, i.e., ∃p ∈ ∩Kn. We just need to prove
that there is no point q 6= p in ∩Kn. Indeed, suppose ∃q 6= p ∈ ∩Kn. This means
that diam(Kn) ≥ d(p, q) 6= 0. A contradiction.

Lastly, we prove an extremely important result. (Indeed, sometimes people like to
define real numbers using the last property of the following theorem.)

Theorem 4. 1. In any metric space (X, d), every convergent sequence is Cauchy.

2. If E ⊂ X is a compact set, and pn ∈ E is a Cauchy sequence in E, then it converges
to a limit p ∈ E.

3. In Rm, every Cauchy sequence converges.

Proof. 1. Indeed, if pn → p, then choose an N so that n,m > N → d(pn, p), d(pm, p) <
ε
2
. Then d(pn, pm) < d(pn, p) + d(p, pm) < ε.

2. pn has a convergent subsequence that converges to a point p ∈ E. Here is a
general statement - If a subsequence of a Cauchy sequence converges to a point
p, then the sequence itself converges to p. Indeed, choose an N so large that
d(pnk

, p) < ε
2
∀ k ≥ N and d(pi, pj) <

ε
2
∀ i, j > N . Now for all n > max(N, nN)

we see that d(pn, p) < d(pn, pnN
) + d(pnN

, p) < ε.

3. We just need to show that the given Cauchy sequence pn is contained in a compact
set E. (Then the previous result shows that it indeed converges.) Since the sequence
is Cauchy, its diameter is finite (why?). So it is bounded. So it has a convergent
subsequence. (Bolzano-Weierstrass.)

The importance of Cauchy sequences in mathematics cannot be overstated. Notice
that real numbers are so special, that to know whether a sequence converges to something
or not, you do not have to know what its limit is. You simply need to check whether it
is Cauchy or not. So there is no need for clever guesswork as to what its limit may be.
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This property is so useful that it is given a name -
A metric space (X, d) is said to be complete every Cauchy sequence converges.
(Why is this expected to be useful ? Very often, if you are asked to solve an equation on
a computer (whether it is the root of a polynomial, the eigenvectors of a matrix, an ODE,
or even worse, a PDE), you usually try to come up with an iterative algorithm to solve it.
Theoretically speaking (even practically for that matter), you need to know whether the
algorithm converges at all (and if it does, whether it does to the right limit or not). For
these things, you do not need to know anything about what it might converge to. You
just need to prove that you have a Cauchy sequence in a complete metric space. (How
do you cast an ODE or a PDE in this framework ? Well, stay tuned is all I can say for
now.)
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