Notes for 1 Mar (Wednesday)

1 Recap

- 1. Finished the proof of Riemann's rearrangement theorem.
- 2. Defined limits and continuity.
- 3. Wrote an alternate characterisation of continuity (inverse images of open sets are open). Proved that continuous functions that compact sets to compact sets and that 1-1 continuous functions on compact sets have continuous inverses.

2 Uniform continuity

If you take a more advanced course in analysis or perhaps topology, something called the Arzela-Ascoli theorem will be proved. We will set up the ground work with one last definition.

Note that in the definition of continuity we said that for every $\epsilon > 0$, there exists a $\delta > 0$ such that $d(x, p) < \delta \Rightarrow d(f(x), f(p)) < \epsilon$. However, if we change p, the δ might change, i.e., δ might depend on p.

Not convinced ? Here is an example : Suppose we take $f(x) = \frac{1}{x}$ on (0, 1). Fix $\epsilon > 0$. Suppose a single $\delta > 0$ made sure that $|x - p| < \delta \Rightarrow |\frac{1}{x} - \frac{1}{p}| < \epsilon$. Then $|x - p| < |x||p|\epsilon < (\delta + |p|)|p|\epsilon$. Now choose |p| to be so small that the right hand side is less than $\frac{\delta}{3}$. Now surely, $p + \frac{\delta}{3}$ will lead to a contradiction.

So we need a new definition for these kinds of situations. It is called Uniform continuity. Indeed, a function $f: X \to Y$ is said to be uniformly continuous if for every $\epsilon > 0$ there exists a $\delta > 0$ (possibly depending on ϵ but not on anything else) such that whenever any two points p and q in X satisfy $d(p,q) < \delta$, then $d(f(p), f(q)) < \epsilon$. The above example shows that $\frac{1}{x}$ is NOT uniformly continuous (despite being continuous) on (0, 1). In fact, this can be generalised. On any bounded noncompact set $E \subset \mathbb{R}$ you can construct a function which is continuous but not uniformly so. So when are continuous functions uniformly continuous ?

Theorem 1. Suppose X is compact. Then any continuous function $f : X \to Y$ is uniformly continuous.

Proof. Indeed, suppose we are given $\epsilon > 0$. Let $\delta_q > 0$ be such that $d(f(p), f(q)) < \frac{\epsilon}{2}$ whenever $d(p,q) < \delta_q$. Now consider the balls $B_q = B_{\delta_q/2}(q)$ where q ranges over all of X. Since X is compact, you need finitely many balls $B_{q_1}, B_{q_2}, \ldots, B_{q_n}$ to cover X. Now let δ be the smallest of $\frac{\delta_{q_i}}{2}$. So given any two points p, q, surely q is in one of the B_{q_i} . Thus $d(f(q), f(q_i)) < \frac{\epsilon}{2}$. Also, since $d(p,q) < \delta \leq \delta_{q_i}/2$, this means that $d(p,q_i) < \delta_{q_i}$. Thus $d(f(p), f(q_i)) < \frac{\epsilon}{2}$. Likewise, $d(f(q), f(q_i)) < \frac{\epsilon}{2}$. Thus $d(f(p), f(q)) < \epsilon$.

3 Continuity and connectedness

Akin to compactness, continuous functions preserve connectedness, i.e.,

Theorem 2. Suppose $f : E \subset X \to Y$ is continuous, and E is connected, then f(E) is connected.

Proof. Suppose $f(E) = A \cup B$ where $A = U_1 \cap E \neq \phi$ and $B = U_2 \cap E \neq \phi$ are relatively open in E (that is, U_1 and U_2 are open in X) and are disjoint, i.e., assume that f(E) is not connected.

Since f is continuous, $f^{-1}(U_i)$ are open in X. Therefore $E = f^{-1}(f(E)) \cap E = (f^{-1}(U_1) \cap E) \cup (f^{-1}(U_2) \cap E)$ where $G = f^{-1}U_1 \cap E$ and $H = f^{-1}U_2 \cap E$ are nonempty and relatively open in E. Since A and B are disjoint, so are $f^{-1}(A) \cap E = f^{-1}(U_1) \cap E \neq \phi$ and $f^{-1}(B) \cap E = f^{-1}(U_2) \cap E \neq \phi$. This means that E is not connected, a contradiction. \Box

This may be used to give a simple proof of the famous intermediate value theorem.

Theorem 3. If $f : [a, b] \to \mathbb{R}$ is continuous such that f(a) < f(b), then if $c \in [f(a), f(b)]$ there exists an $x \in (a, b)$ such that f(x) = c.

Proof. Indeed, we know that (a, b) is connected. Therefore f(a, b) is so too. We also know that connected subsets of \mathbb{R} satisfy the property that if $u, v \in E$ then $(u, v) \subset E$. This shows that $(f(a), f(b)) \subset f(a, b)$.

You might be tempted to think that the converse is true, i.e., suppose for every $x_1 < x_2$ such that $f(x_1) < f(x_2)$ and $c \in (f(x_1), f(x_2))$ there exists an $x \in (x_1, x_2)$ such that f(x) = c, then f is continuous. But this is false. For example, $f(x) = \sin(1/x)$ when $x \neq 0$ and f(0) = 0 is not continuous but does satisfy this property.

4 Assorted topics - Discontinuities, monotonic functions, and limits at infinity

We say that $\lim_{x\to\infty} f(x) = A$ iff for every $\epsilon > 0$ there exists an M > 0 such that for all x satisfying x > M, we have $|f(x) - A| < \epsilon$. Likewise for $-\infty$.

We say that $\lim_{x\to a} f(x) = \infty$ iff for every M > 0 there exists a $\delta > 0$ such that $|x - a| < \delta$ implies that f(x) > M. Likewise for $-\infty$. Likewise for $\lim_{x\to\infty} f(x) = \infty$ and so on.

The rules of limits apply in these cases too with the understanding that $0 \times \infty, \infty - \infty, \frac{\infty}{\infty}, \frac{A}{0}$ do not make sense.

Let's define left and right hand limits to study discontinuities. Indeed, $\lim_{x\to a^+} f(x) = L$ iff for every sequence $x_n \to a$ such that $x_n > a \forall n, f(x_n) \to L$. Sometimes L is written as f(a+). Likewise, for the left-hand limit f(a-).

A function is continuous iff f(a+) = f(a-) = f(a). Indeed, if a function is continuous of course this is true. Conversely, if this is true, then suppose f is discontinuous. Then, there exists an $\epsilon > 0$ such that for every integer k > 0 there exists an $x_k \in (a - \frac{1}{k}, a + \frac{1}{k})$ such that $|f(x_k) - f(a)| \ge \epsilon$. Suppose x_k contains infinitely many terms $x_{n_k} \ge a$ (without loss of generality). Then the subsequence $x_{n_k} \to a$ from the right and hence $f(x_{n_k}) \to f(a+)$ by assumption. This is a contradiction.

Thus for a function $f: E \subset \mathbb{R} \to \mathbb{R}$ defined at a, there are two kinds of discontinuities at a-

- 1. Jump discontinuities or discontinuities of the first kind f(a+) and f(a-) exist. In this case, either $f(a+) \neq f(a-)$ or $f(a+) = f(a-) \neq f(a)$.
- 2. Discontinuities of the second kind One of them (or perhaps both) do not exist.

Examples :

- 1. f(x) = 1 when x is rational and 0 when x is irrational is discontinuous at every point (rationals and irrationals are dense). The discontinuity is of the second kind.
- 2. f(x) = x when x is rational and 0 when x is irrational is continuous only at 0. Everywhere else it has a discontinuity of the second kind.
- 3. $f(x) = \sin(1/x)$ when $x \neq 0$ and f(0) = 0 is discontinuous only at 0 (second kind).

If $f : (a, b) \to \mathbb{R}$ is a function such that $f(x) \leq f(y)$ if a < x < y < b then f is said to be monotonically increasing. If f(x) < f(y) for all such x < y then it is strictly monotonically increasing. Likewise, we have monotonically decreasing functions. If either is true, the function is monotonic. Here is a result that implies there are no discontinuities of the second kind for such functions.

Theorem 4. If $f : (a,b) \to \mathbb{R}$ is monotonically increasing, then f(x+) and f(x-) exist for every point $x \in (a,b)$. Moreover, $f(x+) \leq f(y-)$ for x < y. Furthermore, $f(x+) = \inf_{b>t>x} f(t)$ and $f(x-) = \sup_{a < t < x} f(t)$.

Proof. On (x, b), f(t) is bounded below by f(x). Thus $M = \inf_{b>t>x} f(t)$ exists. Likewise, $m = \sup_{a < t < x} f(t)$ exists. For every $\epsilon > 0$, $M + \epsilon > f(t) \ge M$ for some b > t > x. Since fis increasing, $M + \epsilon > f(y) \ge M \forall t \ge y > x$ and hence $M + \epsilon \ge f(x+) \ge M$. Since this is true for all ϵ , f(x+) = M. Likewise f(x-) = m. Moreover, suppose x < y. Then for all $y > y_1 > t > x$, $f(t) \le f(y_1) \le f(y)$. Since f(x+) is also equal to (by monotonicity of f) $\inf_{y_1 > t > x} f(t)$ we see that $f(x+) \le f(y_1)$. Therefore, $f(x+) \le f(y-)$. \Box