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1.

Notes for 22 Feb (Wednesday)

A long recap

We defined series > a, as a sum of a sequence a,, convergence and divergence
(as the convergence and divergence of the partial sums sy). We saw that a series
diverges if the corresponding sequence a,, does not go to 0 (the divergence test).
We also saw that if you take a series of non-negative terms, it converges if and only
if the partial sums are bounded. (Monotone bounded sequences converge.)

. We showed the comparison test. (If you are positive and less than someone who

converges, then you converge.)

. We looked at Cauchy’s theorem that in the case of non-negative decreasing terms

reduced the convergence of a series to that of another series ) 2"agn. Using this
we found several examples of convergent/divergent series (like the Harmonic series
and in general the p-series > 1/nP).

. We proved the ratio and root tests for absolute convergence, i.e. if you take Y a,

then it converges absolutely if lim sup |a,|"/" < 1 and diverges if the limit is larger
than 1. If it is equal to 1 then you are screwed. Likewise you can also consider
lim sup % The root test is in theory more powerful than the ratio test. However,

the ratio test is easier to use.

Defined power series » | ¢,2". Using the ratio/root tests we determined that a power
series converges when |z| < R and diverges when |z| > R for a number R called

the radius of convergence. R = +Cn+1| On the circle of convergence |z| = R,
lim sup —/—+—
[en

strange things can happen. By the way, here is a small point :
lim inf ﬁ = ﬁ if none of the a, are 0, limsup |a,| # 0, co. Indeed,
n p |an|

1 1 1
liminf — = lim inf — = lim ——— (1)
|an| N—oon>N |an| N—oo SUP,> N |an|

where the last equality is proved (recall) as follows : Assume without loss of gener-
ality that a, > 0 and by > 0 where by = sup,,> y a,. Assume that by # a; for any [

because if so, then - = L and we are done. Let cy = inf,>x =. Given a positive
’ bn nz an

integer & > 0 there exists (inductively) an a,, such that by — % < a,, < by and
ng > ng_1 > .... (The last inequality holds because otherwise, either eventually all
the a,, are larger than by which is absurd or they are eventually less than by — %
If the latter is true, then their supremum has to be less than by — ¢ for some ¢ > 0



because the none of them is equal to the supremum and they have to get arbitrar-
ily close to it.) Therefore a,, — by. Likewise, we can get another subsequence

! . . .
A, — CN- Now cny < limp_yoo —al = _b}v and likewise by > —C}V. Thus we are done.
'VLk

6. Defined absolute and conditional convergence. Using summation-by-parts we proved
the alternating series test. Actually we proved something more general, i.e., if b,
is a decreasing sequence that goes to 0 and the partial sums Ay = ijzo a, form a
bounded sequence then > a,b, converges.

7. Defined multiplication and addition of series. Saw that the product of two con-
vergent series need NOT be convergent. However, if one of them is absolutely
convergent then it is indeed convergent. (Mertens’ theorem.)

8. Defined rearrangements. Recall that if ) a,, is a series, then a rearrrangement is a
new series > a, such that a, = agn) where f: Z, — Z, is a bijection.
Stated the Riemann rearrangement theorem and the fact that for absolutely con-
vergent series, the rearranged series has the same sum as the original one.

2 Multiplication of series (cont’d..)

We shall now prove Mertens’ theorem.

N
Proof. So we want to bound Z ¢n — AB for large N. Let B, be the partial sum B, =

n=0

Z by and likewise A,,. Indeed,

k=0
N
| ch — AB| = |a0b0 + ((llb() + aobl) + (Clgbo + a1b1 + b()ag) +...— AB|
n=0

=lag(bp +b1+ ... +bn) +ar(bo+b1+...by_1) +... — AB|
=layBy + a1By_1+ ...+ ayBy — AB|
=lap(Byn —B)+a(By-1—B)+...—B(A—ay—ay...—ayn)|,
<lap(By — B)+ a(By-1 — B)+...|+ Bl|(A—ay—a;... —ay)|
< |ag(By — B) +a1(By_1 — B)+...| +¢
if N is large enough. We just need to prove that |ag(By — B)+a1(By_1—B)+...| =0

as N — oco. Let a = Z |a,,|. Note that in the sum in the last inequality, if N is very
n=0

large, then first few terms of the type By_; — B will be small (as long as N — i is large),
and in the other terms a; will be small. More precisely speaking, choose M such that
|Br, — B| < eV k> M. Then

N
1> ¢o— AB| <lag(By — B)| + |ar(By_1 — B)| + ... +¢

n=0

S (|a0\ -+ \al\ + ...+ |CLN,MD6 -+ |BM71aN7M+1 +...+ BUaN| + €



Now fix M and let N — oo. Then we will see that the right-hand side goes to ae+0+¢ V €.
Now let € — 0 to see the result. [

3 Rearrangements (cont’d)..

Firstly (and thankfully), if the series is absolutely convergent, then all rearrangements
converge to the same sum.

Theorem 1. If > a, is a series of complex numbers that converges absolutely, then every
rearrangement S a, converges and converges to' > .

oo
Proof. Suppose N is chosen to be so large that Z lag| < €V n > N. Then, consider a
k=n+1
rearrangement a}c. Fix N. Now choose N > N to be so large that the sequence a’l, cee a}v
contains ay, as, ...,ay. Now

N , N
1> a =D an|<e 2)
k=1

k=1
Therefore,
N N
ZaN—e<hm inf Z }fg < lim sup Zak<ZaN+e (3)
N—>oo =0 N—)ook 0
for all N and €. Now let N — oo and then € — 0 to get the result. O

The above example of conditionally convergent series suggests that if a series is not
absolutely convergent, then perhaps there is a rearrangement whose lim sup is perhaps
different. Shockingly enough, something even stronger holds.

Theorem 2. Let > a, be a convergent series of real numbers that does NOT converge
absolutely. Suppose —oo < a < [ < oo. Then there exists a rearrangement a; with
partial sums s, such that limsup s, =  and liminf s, = a.

Proof. The proof is clever and I do not claim to have any way to simplify it.
Let p, = la”‘% and ¢, = WT*‘M, i.e., p, consists of the positive terms of the sequence
(along with 0 wherever negative terms appear) and likewise ¢,. The series Y . p, and > ¢,
must both diverge because otherwise, > a, is absolutely convergent.

Let Pi, P, ... be the nonnegative terms of a,, in the order in which they occur and likewise
1, Q> ... be the absolute values of the negative terms in their original order. Note that
> P, and ) @, must diverge because they differ from > p, and >_ g, by zeroes.

We shall construct sequences {m,}, {k,} such that the series
P4+.. 4Py —Qi—...—Qp+Pps1+.. .+ Py — Quyp1 — - ...

which is clearly a rearrangement of the original series, satisfies the desired properties.
Choose real-valued sequences «,, — « and [, — 3 such that «, < £, and B; > 0.



Because Y P, and Y @, diverge, the following is possible —

Let mq, ky be the smallest integers such that
Po+P...4+ P, > B,

P1+P2...+Pm1—Ql—QQ—...—le<CY1.

Then let mo, ko be the smallest integers such that
P+P...+Py —Q1—Qa— ... — Qp, + Prys1+ ... + Py > o,

Po+Po. 4Py —Q1—Qa— ... —Qu + P+ + Py — Qi — - — Qpy, < .

Continue this way. Suppose z,,y, are the partials whose last terms are P,,, and Qy,.
Then since |z, — B,] < Py, and |y, — a,| < Qy,,, we see that z, — 5 and y, — «.
It is clear that no other subsequential limit can be larger than § or less than . O



	A long recap
	Multiplication of series (cont'd..)
	Rearrangements (cont'd)..

