
Notes for 22 Feb (Wednesday)

1 A long recap

1. We defined series
∑
an as a sum of a sequence an, convergence and divergence

(as the convergence and divergence of the partial sums sN). We saw that a series
diverges if the corresponding sequence an does not go to 0 (the divergence test).
We also saw that if you take a series of non-negative terms, it converges if and only
if the partial sums are bounded. (Monotone bounded sequences converge.)

2. We showed the comparison test. (If you are positive and less than someone who
converges, then you converge.)

3. We looked at Cauchy’s theorem that in the case of non-negative decreasing terms
reduced the convergence of a series to that of another series

∑
2na2n . Using this

we found several examples of convergent/divergent series (like the Harmonic series
and in general the p-series

∑
1/np).

4. We proved the ratio and root tests for absolute convergence, i.e. if you take
∑
an

then it converges absolutely if lim sup |an|1/n < 1 and diverges if the limit is larger
than 1. If it is equal to 1 then you are screwed. Likewise you can also consider
lim sup |an+1|

|an| . The root test is in theory more powerful than the ratio test. However,
the ratio test is easier to use.

5. Defined power series
∑
cnz

n. Using the ratio/root tests we determined that a power
series converges when |z| < R and diverges when |z| > R for a number R called
the radius of convergence. R = 1

lim sup
|cn+1|
|cn|

. On the circle of convergence |z| = R,

strange things can happen. By the way, here is a small point :
lim inf 1

|an| = 1
lim sup |an| if none of the an are 0, lim sup |an| 6= 0,∞. Indeed,

lim inf
1

|an|
= lim

N→∞
inf
n≥N

1

|an|
= lim

N→∞

1

supn≥N |an|
, (1)

where the last equality is proved (recall) as follows : Assume without loss of gener-
ality that an > 0 and bN > 0 where bN = supn≥N an. Assume that bN 6= al for any l
because if so, then 1

bN
= L and we are done. Let cN = infn≥N

1
an

. Given a positive

integer k > 0 there exists (inductively) an ank
such that bN − 1

k
≤ ank

≤ bN and
nk > nk−1 > . . .. (The last inequality holds because otherwise, either eventually all
the an are larger than bN which is absurd or they are eventually less than bN − 1

k
.

If the latter is true, then their supremum has to be less than bN − c for some c > 0
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because the none of them is equal to the supremum and they have to get arbitrar-
ily close to it.) Therefore ank

→ bN . Likewise, we can get another subsequence
a

′
nk
→ cN . Now cN ≤ limk→∞

1
ank

= 1
bN

and likewise bN ≥ 1
cN

. Thus we are done.

6. Defined absolute and conditional convergence. Using summation-by-parts we proved
the alternating series test. Actually we proved something more general, i.e., if bn
is a decreasing sequence that goes to 0 and the partial sums AN =

∑N
n=0 an form a

bounded sequence then
∑
anbn converges.

7. Defined multiplication and addition of series. Saw that the product of two con-
vergent series need NOT be convergent. However, if one of them is absolutely
convergent then it is indeed convergent. (Mertens’ theorem.)

8. Defined rearrangements. Recall that if
∑
an is a series, then a rearrrangement is a

new series
∑
a

′
n such that a

′
n = af(n) where f : Z+ → Z+ is a bijection.

Stated the Riemann rearrangement theorem and the fact that for absolutely con-
vergent series, the rearranged series has the same sum as the original one.

2 Multiplication of series (cont’d..)

We shall now prove Mertens’ theorem.

Proof. So we want to bound
N∑

n=0

cn − AB for large N . Let Bn be the partial sum Bn =

n∑
k=0

bk and likewise An. Indeed,

|
N∑

n=0

cn − AB| = |a0b0 + (a1b0 + a0b1) + (a2b0 + a1b1 + b0a2) + . . .− AB|

= |a0(b0 + b1 + . . .+ bN) + a1(b0 + b1 + . . . bN−1) + . . .− AB|
= |a0BN + a1BN−1 + . . .+ aNB0 − AB|

= |a0(BN −B) + a1(BN−1 −B) + . . .−B(A− a0 − a1 . . .− aN)|,
≤ |a0(BN −B) + a1(BN−1 −B) + . . . |+B|(A− a0 − a1 . . .− aN)|

≤ |a0(BN −B) + a1(BN−1 −B) + . . . |+ ε

if N is large enough. We just need to prove that |a0(BN −B) + a1(BN−1−B) + . . . | → 0

as N → ∞. Let α =
∞∑
n=0

|an|. Note that in the sum in the last inequality, if N is very

large, then first few terms of the type BN−i −B will be small (as long as N − i is large),
and in the other terms ai will be small. More precisely speaking, choose M such that
|Bk −B| ≤ ε ∀ k ≥M . Then

|
N∑

n=0

cn − AB| ≤ |a0(BN −B)|+ |a1(BN−1 −B)|+ . . .+ ε

≤ (|a0|+ |a1|+ . . .+ |aN−M |)ε+ |BM−1aN−M+1 + . . .+B0aN |+ ε
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Now fix M and let N →∞. Then we will see that the right-hand side goes to αε+0+ε ∀ ε.
Now let ε→ 0 to see the result.

3 Rearrangements (cont’d)..

Firstly (and thankfully), if the series is absolutely convergent, then all rearrangements
converge to the same sum.

Theorem 1. If
∑
an is a series of complex numbers that converges absolutely, then every

rearrangement
∑
a

′
n converges and converges to

∑
an.

Proof. Suppose N is chosen to be so large that
∞∑

k=n+1

|ak| < ε ∀ n ≥ N . Then, consider a

rearrangement a
′

k. Fix N . Now choose Ñ > N to be so large that the sequence a
′
1, . . . , a

′

Ñ
contains a1, a2, . . . , aN . Now

|
Ñ∑
k=1

a
′

k −
N∑
k=1

aN | < ε. (2)

Therefore,

N∑
k=0

aN − ε ≤ lim inf
Ñ→∞

Ñ∑
k=0

a
′

k ≤
Ñ∑
k=0

a
′

k ≤ lim sup
Ñ→∞

Ñ∑
k=0

a
′

k ≤
N∑
k=0

aN + ε (3)

for all N and ε. Now let N →∞ and then ε→ 0 to get the result.

The above example of conditionally convergent series suggests that if a series is not
absolutely convergent, then perhaps there is a rearrangement whose lim sup is perhaps
different. Shockingly enough, something even stronger holds.

Theorem 2. Let
∑
an be a convergent series of real numbers that does NOT converge

absolutely. Suppose −∞ ≤ α ≤ β ≤ ∞. Then there exists a rearrangement a
′
n with

partial sums s
′
n such that lim sup s

′
n = β and lim inf s

′
n = α.

Proof. The proof is clever and I do not claim to have any way to simplify it.
Let pn = |an|+an

2
and qn = |an|−an

2
, i.e., pn consists of the positive terms of the sequence

(along with 0 wherever negative terms appear) and likewise qn. The series
∑
pn and

∑
qn

must both diverge because otherwise,
∑
an is absolutely convergent.

Let P1, P2, . . . be the nonnegative terms of an in the order in which they occur and likewise
Q1, Q2 . . . be the absolute values of the negative terms in their original order. Note that∑
Pn and

∑
Qn must diverge because they differ from

∑
pn and

∑
qn by zeroes.

We shall construct sequences {mn}, {kn} such that the series

P1 + . . .+ Pm1 −Q1 − . . .−Qk1 + Pm1+1 + . . .+ Pm2 −Qk1+1 − . . .

which is clearly a rearrangement of the original series, satisfies the desired properties.
Choose real-valued sequences αn → α and βn → β such that αn < βn and β1 > 0.
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Because
∑
Pn and

∑
Qn diverge, the following is possible –

Let m1, k1 be the smallest integers such that

P1 + P2 . . .+ Pm1 > β1,

P1 + P2 . . .+ Pm1 −Q1 −Q2 − . . .−Qk1 < α1.

Then let m2, k2 be the smallest integers such that

P1 + P2 . . .+ Pm1 −Q1 −Q2 − . . .−Qk1 + Pm1+1 + . . .+ Pm2 > β2,

P1 + P2 . . .+ Pm1 −Q1 −Q2 − . . .−Qk1 + Pm1+1 + . . .+ Pm2 −Qk1+1 − . . .−Qk2 < α2.

Continue this way. Suppose xn, yn are the partials whose last terms are Pmn and Qkn .
Then since |xn − βn| ≤ Pmn and |yn − αn| ≤ Qkn , we see that xn → β and yn → α.
It is clear that no other subsequential limit can be larger than β or less than α.
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