Notes for 22 Mar (Wednesday)

1 Recap

- 1. We proved that (while it is NOT true that if a sequence of continuous functions f_n converges to a continuous function f pointwise it means that f_n converges uniformly to f) if a decreasing sequence of continuous functions f_n converges to f pointwise on a compact set, then indeed f_n converges to f uniformly. Compactness of the domain was essential.
- 2. We defined the weird metric space C(X) consisting of all complex-valued bounded continuous functions on X. The metric was $d(f,g) = \sup |f(x) g(x)|$. We proved the pleasant statement that C(X) is complete.
- 3. We proved that if a sequence of RS functions f_n converges uniformly to an RS function f, then indeed f is RS and you can interchange limits and integrals.
- 4. For differentiable functions we saw that uniform convergence $f_n \to f$ is NOT good enough for interchanging limits and derivatives. Instead, we proved that if $f'_n \to g$ uniformly and $f_n(x_0) \to A$ for some x_0 , and if f'_n are continuous, then indeed f' = g. Actually we can drop the continuity assumption on f'_n . In this more general theorem, we proved so far that $f_n \to f$ uniformly. Today we will prove that f' = g.

2 Uniform convergence and differentiation

Theorem 1. If $f_n : (a - \epsilon, b + \epsilon) \to \mathbb{R}$ is a sequence of functions whose derivatives exist on [a, b]. Suppose $f_n(x_0)$ converges to some number A for some point $x_0 \in [a, b]$. If f'_n converges uniformly on [a, b] to a function g then f_n converge uniformly on [a, b] to fsuch that $f'(x) = \lim_{n\to\infty} f'_n(x)$.

Proof. The only way to get derivatives into the picture without using the fundamental theorem of calculus is to use the MVT.

Cont'd..... Now let $\phi_n(h) = \frac{f_n(x+h) - f_n(x)}{h}$ and $\phi(h) = \frac{f(x+h) - f(x)}{h}$. When $h \neq 0$, $\phi_n(h)$ converges uniformly to $\phi(h)$ because $|\phi_n(h) - \phi_m(h)| = \frac{|f_n(x+h) - f_m(x+h) - (f_n(x) - f_m(x))|}{|h|}$ which by earlier arguments is less than or equal to $\frac{\epsilon}{2(b-a)}$ when n, m > N. Thus ϕ_n converges uniformly to ϕ . Moreover, $\lim_{h\to 0} \phi_n(h) = f'_n(x)$. Thus by the theorem on interchange of limits, f'(x) = g(x).

Here is a surprising application of these results.

Theorem 2. There exists a real continuous function on the real line which is nowhere differentiable. (Weierstrass.)

Proof will be done the next time.