
Notes for 22 Mar (Wednesday)

1 Uniform convergence and differentiation

Theorem 1. There exists a real continuous function on the real line which is nowhere
differentiable. (Weierstrass.)

Proof. Define φ(x) = |x| on [−1, 1]. This has a corner at x = 0. The idea is to use this
by scaling and translating to most other points to get a very “rough” function with lots
of corners.
You can extend φ to all reals by making it periodic, i.e., φ(x+2) = φ(x). Then for all s, t,

|φ(s)− φ(t)| ≤ |s− t|. So φ is continuous. Define f(x) =
∞∑
n=0

3n

4n
φ(4nx). Since 0 ≤ φ ≤ 1

the Weierstrass M-test shows that this series converges uniformly. Hence f is continuous.
It seems that f has too many corners to be differentiable. Indeed that is the case.
Fix a number x and a positive integer m. Let δm = ±1

2
4−m where the sign is chosen so

that no integer lies between 4mx and 4m(x+δm). This can be done because the difference

is 1
2
. Define γn = φ(4n(x+δm))−φ(4nx)

δm
. If n > m, then 4nδm is an even integer and thus

γn = 0. When 0 ≤ n ≤ m, |γn| ≤ 4n. Since |γm| = 4m, we see that

|f(x+ δm)− f(x)|
|δm|

= |
m∑
n=0

3n

4n
γn| ≥ 3m −

m−1∑
n=0

3n =
1

2
(3m + 1). (1)

Therefore since δm → 0 as m→∞ we conclude that f is not differentiable at x.

2 Equicontinuity and Arzela-Ascoli

Suppose we want to find the root of a polynomial on a computer. Normally what one
does is to use some iterative technique (like Newton’s method) whereby you have an
initial “guess” x0, then you improve it to x1, improve that to x2 and so on. You hope
that this sequence will converge to the correct answer. How does one prove these sorts
of things ? Well, at least if you prove that this sequence is bounded, then there is some
hope because every bounded sequence of real numbers has a convergent subsequence. So
at least a subsequence converges.

If you want to play the same game with solving a differential equation on a computer,
then naively, you will take a “guess” f0(x), then improve it to f1(x) and so on. If you
at least want a convergent subsequence, then is proving that fk are “bounded” enough ?
What does “bounded” mean for a family of functions in the first place anyway ?
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We say that fn is pointwise bounded if for every x ∈ E the sequence of numbers fn(x)
is bounded, i.e. there is a finite function φ(x) such that |fn(x)| ≤ φ(x).

We say that fn is uniformly bounded if |fn(x)| < M for all n and all x ∈ E. If fn con-
verges uniformly to some function f(x) then |fn(x)| ≤ ε+ |f(x)| ∀ n ≥ N and all x ∈ E.
This means that fn(x) is definitely pointwise bounded. Suppose all the fn are bounded
functions, i.e., |fn(x)| < Mn which is independent of x, then of course |f(x)| ≤ MN + ε
and hence fn are actually uniformly bounded.

Unfortunately, even if fn are uniformly bounded sequence of continuous functions on
E, there need not exist a subsequence which converges even pointwise on E! This is not
true even if E is compact.
Here is a counterexample : Take fn(x) = sin(nx) on [0, 2π]. This is a uniformly bounded
family. Suppose a subsequence fnk

(x) = sin(nkx) converged pointwise to some f(x),
then limk→∞(sin(nkx) − sin(nk+1x))2 = 0 on [0, 2π]. An easy calculation shows that∫ 2π

0

(sin(nkx) − sin(nk+1x))2 = 2π. However, if you could interchange limits and inte-

grals, you will see that limk→∞
∫ 2π

0
(sin(nkx)− sin(nk+1x))2dx = 0. The fact that you can

do so follows from a deep theorem in measure theory. It is not easy to prove such things
with the machinery we have developed so far. But anyway this is just a counterexample,
so we don’t need to worry too much about.

Another natural question is “Even if you have a convergent sequence, is there a uni-
formly convergent subsequence if the sequence is uniformly bounded on a compact set?”
The answer is still unfortunately, no :
Take fn(x) = x2

x2+(1−nx)2 on [0, 1]. This family of functions is of course uniformly bounded

by 1. It converges pointwise to f(x) = 0. However, fn(1/n) = 1 which means that no
subsequence can converge uniformly to 0 (If it did, then |fnk

(x)| < ε < 1 for all x and
k > N . But fnk

(1/nk) = 1 > ε).
We need another condition called equicontinuity. A family F of complex-valued func-

tions defined on a set E in a metric space X is said to be equicontinuous on E if for
every ε > 0 there exists a δε > 0 such that |f(x) − f(y)| < ε whenever d(x, y) < δε for
all f ∈ F , i.e., δε depends only on ε and not on x, y, f . In particular an equicontinuous
family consists of uniformly continuous functions. It will turn out later on that this is
the missing condition.
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