
Notes for 24 Mar (Friday)

1 Recap

1. Constructed an example of a function that is everywhere continuous but nowhere
differentiable.

2. Defined equicontinuity as possible hypothesis to make in order to study compact
subsets of C(X).

2 Equicontinuity

Here are examples and counterexamples of equicontinuous families of functions :

1. The previously seen family fn(x) = x2

x2+(1−nx)2 on [0, 1] is NOT equicontinuous.

Indeed, if |fn(x)− fn(y)| < ε < 1 for |x− y| < δε, then take n so large that 1
n
< δε.

For such an n, |fn(1/n)− fn(0)| = 1 > ε.

2. The family fn(x) = sin(nx)
n2 is equicontinuous on all of R. Indeed, |fn(x)− fn(y)| =

1
n2 |(sin(nx)− sin(ny))| = 1

n2 |
∫ y

x

n cos(nt)dt| ≤ 1

n
|y − x| < ε when |y − x| < ε.

3. The family fn(x) = e−nx

n2 is equicontinuous on [0, 1] but not so on all of R. Indeed,

on [0, 1], |fn(x)−fn(y)| = 1
n2

∫ y

x

ne−ntdt ≤ 1

n
|x−y| < ε when |x−y| < ε. However,

on all of R if |fn(x)− fn(y)| < ε when |x− y| < δ, then assume y = 0 and x = − δ
2
.

This means that | enδ/2−1
n2 | < ε. But as n→∞ we get a contradiction.

So the moral of the story is that equicontinuity is sort of (but not exactly, for god’s sake
not exactly) like saying that |f ′n(x)| is uniformly bounded independent of x and n. For
now we prove two useful theorems.

Theorem 1. If fn is a pointwise bounded sequence of complex-valued functions on a
countable set E, then fn has a subsequence fnk such that fnk(x) converges to some f(x)
for every x ∈ E.

Proof. Suppose the elements of E are enumerated as x1, x2, . . .. Now fn(x1) is bounded
independent of n. Thus it has a convergent subsequence fnk(x1). In other words, for x1,
you have a subsequence of the fn that converges. Take this subsequence for x2, namely,
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fnk(x2). This is once again bounded by assumption (independent of k). Thus again
by Bolzano-Weierstrass, it has a further subsequence fnkl (x2) that converges. You can
continue like this for every xi. In other words, for x1 you have a convergent subsequence
f1,1, f1,2, . . .. For x2 you have a further convergent subsequence of the previous one which
we shall call as f2,1, f2,2 . . . and so on. Consider the diagonal f1,1, f2,2, . . .. This is definitely
a subsequence (except for the first few terms) of all the subsequences. Therefore it
converges for every xi.

The second theorem shows why equicontinuity might be necessary.

Theorem 2. If K is a compact set such that fn are continuous functions on K, and if
fn converges uniformly to some function f on K, then fn are equicontinuous on K.

Proof. Firstly, since K is compact, all the fn are uniformly continuous. Secondly, since
fn are uniformly convergent, they are uniformly Cauchy. This means that for every ε > 0
there exists an N (depending on ε) such that n,m ≥ N implies that |fn(x)− fm(x)| < ε.
Now what does it mean for these guys to be equicontinuous ? It means that |fn(x) −
fn(y)| < ε whenever d(x, y) < δε where δε does not depend on x, y or even n. We can find
δε,n for every n by uniform continuity but the problem is that it depends on n.
So, |fn(x)− fn(y)| ≤ |fn(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− fn(y)| < ε+ ε+ ε = 3ε
when n ≥ N and d(x, y) < δε,N . So if δ = min(δε,1, δε,2 . . . δε,N) then we are done.

Finally we prove the celebrated Arzela-Ascoli theorem.

Theorem 3. If K is a compact subset of R, fn are continuous on K, and if fn is pointwise
bounded and equicontinuous on K, then

1. fn are uniformly bounded on K, and

2. fn contains a subsequence fnk that converges uniformly to some continuous function
f .

Proof. 1. Since fn are continuous on a compact set K, they are all bounded, i.e.,
|fn(x)| < Mn. By assumption, they are also pointwise bounded, i.e., |fn(x)| < φ(x).
We want |fn(x)| < M . Fix a y. Since fn are equicontinuous, there is a δ such that
d(x, y) < δ ⇒ |fn(x) − fn(y)| < ε. Thus |fn(x)| < |fn(y)| + ε < φ(y) + ε. Now
the open sets Uy = Bδ/2(y) cover K. Since K is compact, only finitely many are
necessary. Call them Uy1 , Uy2 , . . . Uyn . Let M = ε + max(φ(y1), φ(y2), . . . , φ(yn)).
Since any x ∈ K is in one of the balls, let’s say it is in Uy1 . Then |fn(x)−fn(y1)| < ε
because d(x, y1) < δ. Hence |fn(x)| < |fn(y1)|+ ε < M .

2. Since the rationals are countable, we can extract a subsequence fnk (owing to one
of the previous theorems we proved) such that fnk converges pointwise to some
function f on the rationals. We shall prove that the very same subsequence actually
converges uniformly on all of R. Let’s simplify notation and call fnk as gk. The
idea is that rationals are dense, i.e., every real number is close to some rational. So
it seems reasonable that because the gk = fnk converge for that rational and they
are equicontinuous, they ought to for the real number in consideration as well.
Fix an x ∈ K. Now |gi(x)−gj(x)| ≤ |gi(x)−gi(x0)|+|gi(x0)−gj(x0)|+|gj(x0)−gj(x)|
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when x0 is a rational chosen to be δ-close to x such that |gi(x) − gi(x0)| < ε for
all i and all x (by equicontinuity, such a δ exists). Choose i, j > N such that
|gi(x0) − gj(x0)| < ε. This can be done because gk converge on rationals. So
consider the open sets Uq = Bδ(q) where q is a rational. Only finitely many of
these Uqi are necessary to cover K. Therefore, choose N = max(Nq1 , Nq2 , . . .). If
i, j > N , indeed |gi(x) − gj(x)| < 3ε ∀ x ∈ K. This shows that indeed gi are
uniformly Cauchy and hence uniformly converge.

Note that this proof applies almost word-to-word for K being a compact subset of
a metric space. It is just that we need to know that there is a countable dense subset
for every compact metric space. For the reals, we know that rationals are dense and are
countable. For an arbitrary compact metric space K, note that you need only finitely
many balls of size 1

n
(where n ranges over all positive integers) to cover K. (Indeed,

B1/n(p) where p ranges over all K covers K. Since K is compact you need only finitely
many.) Since a countable union of countable sets is countable, the centres of these
countably many balls form a dense subset.
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