
Notes for 25th Jan (Wednesday)

1 Recap

1. Defined open sets, closed sets, dense subsets, perfect sets (every point is a limit
point), closure, and boundary.

2. Proved that a set is closed if and only if it contains all its limit points, proved that
E ∪E ′

= Ē, and finite intersections and arbitrary unions of open sets is open (and
likewise for closed).

3. Defined the notion of relatively open w.r.t to Y (i.e. every point p is contained in
a set Y ∩Br(p) which is completely contained in E).

2 Metric spaces (cont’d...)

Suppose (X, d) is a metric space. Suppose Y ⊂ X. A subset E of Y is said to be open
relative to Y if and only if E = Y ∩G where G is an open subset of X.
Pf : Suppose E = Y ∩ G. Then, given p ∈ E, since p ∈ G, there is a neighbourhood
Br(p) ⊂ G. Now the set Br(p) ∩ Y ⊂ E is a neighbourhood of p in Y . Therefore E is
open relative to Y .
If E is open relative to Y , then every point p ∈ E has a neighbourhood in Y , i.e.,
Br(p)∩ Y ⊂ E. Now let G = ∪p∈EBr(p). This is an open set. Also, E = G∩ Y . (Why?)

3 Compactness

We noticed that even perfectly nice, continuous functions can fail to have maxima/minima
over certain sets. For instance, 1

x
on (0, 1). There are two problems with this function.

Firstly, we can force it to have a minimum by considering it over (0, 1]. However, we can-
not make it have a maximum. What is going wrong is that the set on which it is defined
is not closed. (So you can go arbitrarily close to the maximum without ever reaching
it.) If you think closedness is the only problem, think again - Consider the perfectly
lovely f(x) = x on R. This does not have extrema because it grows without any limit.
(Much like stupidity of us humans.) So it seems that continuous functions on closed sets
that are bounded ought to have extrema. We will prove that indeed this is the case.
In fact, we will prove something more general. For this we need a definition of certain
sets whose special cases are “Closed bounded sets”. The name of such a set is “compact”.
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An open cover {Gα} ⊂ P(X) of E is a collection of open sets Gα such that E ⊂ ∪αGα.
A compact set E ⊂ X where (X, d) is a metric space is one for which every open cover
{Gα} has a finite subcover, i.e., there exists a finite subcollection G1, . . . , Gn such that
E ⊂ ∪ni=1Gi.

It seems like a random definition. It seems to be quite hard to find examples. (Well,
every finite set is compact, but that is a triviality.) Before we come up with examples,
let’s first prove that compactness behaves well under relative-openness/closedness :

Suppose K ⊂ Y ⊂ X. Then K is compact relative to Y if and only if it is compact
relative to X.
Pf: If K is compact relative to Y , then given any cover of relatively open sets G̃α ⊂ Y
then there exists a finite subcover of relatively open sets G̃1, . . . , G̃n. Now given an open
cover (relative to X) Gα, consider the relatively open cover G̃α = Gα ∩ Y . By compact-
ness, K ⊂ ∪iG̃i = ∪i(Gi ∩ Y ) = Y ∩ ∪iGi ⊂ ∪iGi. Thus it is compact relative to X.
If K is compact relative to X, then we shall prove that it is compact relative to Y . Indeed,
given any cover of relatively open sets G̃α ⊂ Y , we know that G̃α = Gα ∩ Y for some
Gα that are open in X. Therefore Gα form a cover. Hence, there is a finite subcover Gi.
This means that K ⊂ ∪iGi. But K ⊂ Y . Hence K ⊂ Y ∩ ∪iGi = ∪iG̃i.

Because of the above theorem, it makes sense to talk of compact metric spaces (with-
out referring to whether the metric space is a subspace of a larger space).

Here is a pleasant property of compactness (that confirms the usefulness of the defi-
nition) :
Compact subsets of metric spaces are closed.
Pf : If K ⊂ X is compact, then suppose x ∈ Kc. We shall prove that x has a neighbour-
hood contained in Kc by studying the “minimum” distance between x and points of K.
Indeed, if p ∈ K consider the neighbourhood Np = Bd(p,x)/2(p). When p ranges over all
points in K, these neighbourhoods form an open cover of K. Since K is compact, there
exists a finite subcover Np1 , Np2 , . . . Npn . Let r = min(d(pi, x). Then Br(x) is disjoint
from Npi for all 1 ≤ i ≤ n. Therefore Br(x) ⊂ Kc. Thus K is closed.

Here is another such property :
Closed subsets of compact sets are compact.
Pf: If C ⊂ K ⊂ X then if {Uα} is an open cover of C, then {Uα}∪{Cc} is an open cover
of K. (Here is where we need to use the closedness of C. However, we only know that
C is closed relative to K, i.e., (it can be proven as an exercise) that C = A ∩K where
A is closed in X. But compact sets are closed and hence so is C closed in X.) Since K
is compact, there exists a finite subcover of it given by U1, U2, . . . Un, C

c. Thus U1, . . . Un
cover C.

As a corollary, we see that the intersection of closed and compact is compact.

Yet another :
Compact subsets of metric spaces are bounded.
Pf: Let p ∈ K. Consider the open cover Br(p) where r ranges over all strictly positive
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reals. Since K is compact there exists a finite subcover Br1(p), . . .. Therefore the maxi-
mum radius R of the ri exists. This easily implies the result.

Our aim now is to finally prove the Heine-Borel theorem -

Theorem 1. Closed bounded subsets of Rn are compact (and vice-versa).

By the previous theorems, the “vice-versa” part is done. Firstly, we claim that it
is enough to prove that closed rectangles are compact. Indeed, given a closed bounded
subset, it is contained in a sufficiently large closed rectangle (Why?) and we proved that
closed subsets of compacts sets are compact.

So, we need to prove that

Theorem 2. Closed rectangles R = [a1, b1]× . . . in Rn are compact.

What does this entail ? Given an open cover Uα of R, we need to prove that it has a
finite subcover Ui, i.e., R ⊂ U1 ∪ U2 . . . Un.

As usual, suppose not. We will derive a contradiction somehow. Let cj =
aj+bj

2
. Since

R does not have a finite subcover, at least one rectangle I1 out of the 2n rectangles formed
by [aj, cj] and [cj, bj] is not covered by finitely many Uα. Now subdivide I1, rinse and
repeat.

Thus we will have obtained a collection of closed rectangles

I1 ⊃ I2 ⊃ I3 . . . (1)

such that In is not covered by a finite subcollection of Uα and In is “small”, i.e., ‖~x−~y‖ ≤
δ
2n

where δ = ‖~a−~b‖ for all ~x, ~y ∈ In.

The basic idea is that if ∩∞n=1In is not empty and hence contains a point p (sounds
believable), then since p ∈ Uβ for some β, there is a neighbourhood Br(p) ⊂ Uβ. But
In are getting smaller and smaller (and they all contain p). So at least one of them has
to be in this neighbourhood (which one ? You need to use the Archimedian property of
reals here). But that is a contradiction because it is covered by Uβ.

So we have reduced our problem to proving the following lemma.

Lemma 3.1. If I1 ⊃ I2 . . . is a collection of closed rectangles in Rm, then ∩nIn is not
empty.

Proof. Firstly, we will prove this for closed intervals in R. If indeed, [a1, b1] ⊃ [a2, b2] . . .,
then consider the set E consisting of all an. It is of course non-empty and bounded
above because a1 ≤ an ≤ bn ≤ b1. Therefore by the least upper bound property of reals,
x = supE exists. We claim that indeed x ∈ [ak, bk] ∀ k. Indeed, ak ≤ x ∀ k. Since
an ≤ an+m ≤ bn+m ≤ bn it is clear that x ≤ bn ∀ n.
Given this, if I1 = [a11, b11] × [a12, b12] . . . ⊃ I2 = [a21, b21] × [a22, b22] . . ., then since
[ai1, bi1] ⊃ [ai2, bi2] ⊃ . . . ∀ 1 ≤ i ≤ m, we see that there exist xi ∈ ∩∞n=1[ain, bin] by the
one-dimensional version proved above. Now the point (x1, x2, . . . , xm) is in all In.
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