
Notes for 27th Jan (Friday)

1 Recap

1. We characterised relative openness w.r.t Y as subsets of the form U ∩ Y where U
is a “usual” open subset of X.

2. We defined compactness, proved that compact subsets are closed and bounded,
closed subsets of compact sets are compact, and the Heine-Borel theorem (closed
bounded subsets of compact sets are compact).

2 Compactness (cont’d)..

Before proceeding further, we note that the property of intersection of rectangles we used
in the proof of Heine-Borel is actually common to compact sets in general metric spaces.

Lemma 2.1. If {Kα} is an arbitrary collection of compact subsets of a metric space X
such that the every finite intersection is nonempty, then ∩Kα is also nonempty.

Proof. Suppose ∩Kα = φ. Then ∪Kc
α = X. This means that the open sets Uα = Kc

α cover
X and hence cover Kβ ∀ β. But each Kβ is compact and hence need only finitely many of
the Uα to cover it. Thus K1 ⊂ Kc

α1
∪Kc

α2
. . . Kc

αn
. This means that K1∩Kα1∩Kα2 . . . = φ

which is a contradiction.

The Heine-Borel theorem implies the following.

Theorem 1. Let E ⊂ Rm. The following are equivalent.

1. E is compact.

2. E is closed and bounded.

3. Every infinite subset of E has a limit point in E.

Later on when we study sequences, we will easily see that this is also the same as
saying that every sequence in E has a convergent subsequence (whose limit lies in E).

Proof. The first two are equivalent by the Heine-Borel theorem. If A is an infinite subset
of E, then A contains a countably infinite subset x1, x2, . . ..
Suppose E is compact. If A has no limit point in E, then every point p ∈ E has a
neighbourhood Np = Brp(p) such that it does not contain any point of A (other than p
itself possibly). Such neighbourhoods form an open cover of E. Therefore, finitely many
such neighbourhoods Np1 , Np2 , . . . Npk cover E and hence A. This is a contradiction.
Suppose every such A has a limit point in E, we will prove that E is
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1. Bounded : If not, then there exists a point uR ∈ E for every R > 0 such that
‖uR‖ > R. Thus {uR} cannot have a limit point (why?) but it is an infinite subset
of E.

2. Closed : We will prove that E contains all of its limit points. Indeed, if p is a limit
point of E, then for every integer j > 0 every neighbourhood B1/j(p) contains a
point qj 6= p from E. The set A of all such qj has a limit point in E. We claim that
it has only one limit point, namely, p. Thus p ∈ E.
Indeed, if p 6= q is a limit point of {qj}, then the neighbourhood Bd(p,q)/2(q) has
only finitely many qj. This is a contradiction.

Please note that while compact sets in general metric spaces are closed and bounded,
(and that infinite subsets having limit points in E is still equivalent to being compact),
not every closed and bounded set is compact. (Take all rationals satisfying 2 < p2 < 3.)

Theorem 2. (Weierstrass) : Every bounded infinite subsets of Rm has a limit point in
Rm.

Proof. Indeed, such a set is contained in a large closed rectangle (which is compact by
Heine-Borel). Thus it has a limit point in that rectangle.

3 Perfect sets

Theorem 3. Every nonempty perfect set P in Rk is uncountable.

Proof. Suppose P is countable, and its elements are given as x1, x2, . . .. Since P is per-
fect, each of these is a limit point of P . Let V1 be any open neighbourhood of x1. We
will construct a collection of open sets Vi such that V̄1 ⊃ V1 ⊃ V̄2 ⊃ V2 ⊃ V̄3 . . . such that
xn /∈ V̄n+1 and Vn ∩ P is not empty. Let Kn = V̄n ∩ P . By one of the lemmas we proved
earlier, ∩nKn is not empty. But xn /∈ Kn+1 and therefore ∩nKn has to be empty. This is
a contradiction.

One can construct the neighbourhoods Vn inductively using the fact that every point
of P is a limit point of P . Indeed, suppose V1, V2, . . . , Vn have been constructed. Suppose
xn ∈ Vn. (Otherwise, we are done because Vn+1 can be chosen to be a smaller neighbour-
hood of any point of Vn ∩ P .) Then since xn is a limit point of P , Vn contains infinitely
many points from P . Just choose Vn+1 to be any small neighbourhood of any point 6= xn
in Vn ∩ P that does not contain xn and is completely contained within Vn.

It seems that perfect sets must always contain an open interval since they seem to
consists exclusively of limit points (as opposed to isolated points). But this is not true
!! Here is a famous counterexample called the Cantor set. This is closely connected to
fractals and other fancy stuff.

Take [0, 1]. Throw out the middle third (1/3, 2/3). You are left with [0, 1/3]∪ [2/3, 1].
(That is, in the ternary expansion, the first digit after the decimal point is either 0 or 2,
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or if it is 1, then all the digits after that are 0.) Now do the same thing to the remaining
intervals. (Throw out the middle third.) Rinse and repeat ad infinitum. The resulting
object has either only 0 or 2 in its ternary expansion, or if it has a 1 then it only has
zeroes after the 1. So it is definitely uncountable. (It has only binary sequences.) It
definitely does not have an open interval (because it virtually does not have more than a
single 1 in its ternary expansion).
It is a perfect set too. Indeed, it is the intersection of countably many compact sets, and
is hence closed. It is also bounded (obviously). Therefore it is compact. (It is non-empty
even from general considerations of compactness.) We have to show that it has no iso-
lated points. This is clear from the ternary representation.

The weird thing is tha if you throw a dart at [0, 1], you are almost surely not going to
hit the Cantor set despite it having uncountably many elements ! (This is closely related
(but not exactly because of) to the observation that it has no open intervals.)

4 Connected sets

Suppose E ⊂ X where (X, d) is a metric space. E is said to be connected if it is NOT
equal to (U1∩E)∪(U2∩E) where U1, U2 are open subsets of X and (U1∩E)∩(U2∩E) = φ.
In other words, it cannot be written as a disjoint union of two open sets (open relative
to E). This sounds like a ****ed up definition of an intuitive, nice concept involving a
simple English word “connected”. But it is quite useful.

First order of business :

Theorem 4. If E ⊂ R, then E is connected if and only if, whenver x, y ∈ E, then all z
such that x < z < y also belongs to E.

Proof. Suppose E is connected. If there is a z in (x, y) such that z /∈ E, then E =
((−∞, z) ∩ E) ∪ ((z,∞) ∩ E). This is a contradiction.
Suppose E is not connected, i.e., E = (U1 ∩ E) ∪ (U2 ∩ E). Suppose x ∈ U1 ∩ E and
y ∈ U2∩E such that x < y. Let U be the set of all x ≤ t ∈ U1∩E. Clearly U is bounded
above by y and is nonempty. By the least upper bound property, there exists z1 = supU .
Likewise, there exists a z2 =∈ V where V consists of all y ≥ t ∈ U2 ∩ E. There are only
two possibilities :

1. z1 < z2. Clearly any z in (z1, z2) does not lie in E.

2. z = z1 = z2. Suppose z ∈ E. Without loss of generality assume that z ∈ U1 ∩ E.
Then (z − ε, z + ε) ∈ U1 for all sufficiently small ε > 0. Since z is a limit point of
U2 ∩ E, such a neighbourhood contains points from U2 ∩ E. But this means that
U1 ∩ U2 ∩ E = U1 ∩ E ∩ U2 ∩ E 6= φ. A contradiction.

We will see connectedness again later on. But all of this is a part of topology. (What
is fondly known as point-set topology because it involves little more than set theory.)
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