
Notes for 2 Feb (Thursday)

1 Recap

1. Defined sequences and subsequences. Proved basic properties of sequences.

2. Defined Cauchy sequences, completeness, and proved that Rk is complete.

2 Sequences (cont’d..)

Here is a familiar definition : A sequence of reals sn is said to be monotonically increasing
if sn ≤ sn+1 ∀ n. Likewise for monotonically decreasing. If it is either, then it is said to
be monotonic. (Like this lecture of mine.)
Here is a theorem :

Theorem 1. Suppose {sn} is monotonic. Then {sn} converges if and only if it is bounded.

Proof. If it converges, of course it is bounded. (Why?)
If it is bounded and monotonically increasing (without loss of generality), then let s =
sup{sn}. I claim that sn → s. Indeed, given ε > 0, since s is the supremum, s− ε is no
longer an upper bound. Therefore, there exists an N so that sN > s− ε ≥ sN − ε (which
means that sn ≥ sN > s− ε ≥ sn− ε ∀ n > N . This means that |sn−s| < ε ∀ n ≥ N .

3 Upper and lower limits

Firstly, a small definition : We say that xn →∞ if for every M > 0, there exists a natural
NM such that xn ≥M ∀ n > NM . Likewise for −∞.
From now onwards, we will allow the symbols +∞ (simply written as ∞) and −∞ in
our “number system”. This is called “Extended Real numbers”. These symbols satisfy
the following properties :

1. −∞ < x < ∞ for all real numbers x. (So if a set E is not bounded from above,
then supE =∞.)

2. If x ∈ R then x+∞ =∞, x−∞ = −∞, x
∞ = x

−∞ = 0.

3. If x > 0, then x.∞ =∞ and x.(−∞) = −∞.

4. Likewise for x < 0.

5. ∞.∞ =∞, ∞.(−∞) = (−∞).∞ = −∞, ∞+∞ =∞ and −∞−∞ = −∞.
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Note that the extended reals do not form a field.

Suppose xn is a sequence of real numbers. Let E (in the extended reals) be the set of
all subsequential limits of {xn} (possibly including ∞, −∞ if necessary).

Define s∗ (written as lim supxn and read as “upper limit” or “limit superior”) as
s∗ = supE (which is allowed to be ∞) and likewise s∗ = inf E (allowed to be −∞).
Note that whether the sequence converges to a limit or not, the lim sup and lim inf
always exist. (Why ? If the sequence is bounded then it contains a convergent subse-
quence. So E 6= φ and thus it makes sense to talk of lim sup and lim inf. If the sequence
is unbounded, then a subsequence converges to∞ or −∞. Therefore E is still not empty.)

Here is a very important property of lim sup and lim inf :

Theorem 2. 1. s∗ and s∗ are in E, i.e., there exist subsequences converging to the
lim sup and lim inf. In other words, the supremum of all subsequential limits is in
fact the maximum of all subsequential limits (and likewise).

2. If x > s∗ there is an integer N such that n > N implies that xn < x.(Likewise for
lim inf.) Moreover, s∗ and s∗ are the only two numbers satisfying these properties.

Proof. We will only prove for s∗. (The case for s∗ follows by taking negatives.)

1. Since s∗ is the supremum of E, xε − ε
2
< s∗ − ε

2
< xε where xε is a subsequential

limit xε = limk→∞ xnk . This means that for k ≥ Nε, |xnk − xε| < ε
2

thus implying
that |s∗ − xnNε | < ε. Therefore xnN1/k

→ s∗ as k →∞.

2. Suppose not. That is, there exists x > s∗ such that for every N there exists an
xnN ≥ x. Then clearly the lim sup of the subsequence xnk is ≥ x > s∗. This is a
contradiction because the lim sup of the subsequence is a subsequential limit.

Suppose s1ands2 are two numbers satisfying the above properties (for s∗). W.Lo.G s1 >
s2. This means that for all n > N we have xn < s1 + s1−s2

2
. But s1 is apparently a

subsequential limit. This is a contradiction.

Sometimes people define lim inf and lim sup in the following way (which is a theorem
in our definition). This is actually very useful to calculate the lim sup and lim inf.

Theorem 3.

lim sup = lim
N→∞

sup
n≥N

xn

lim inf = lim
N→∞

inf
n≥N

xn

Proof. As usual we will only prove the theorem for lim sup. Indeed bN = supn≥N xn
exists as a sequence of extended real numbers. Notice that bN+1 ≤ bN . Thus the limit
(call it y) exists as an extended real number (because bN is monotonically decreasing).
We will prove that this limit satisfies both properties that we mentioned in the previous
theorem.
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1. y is a subsequential limit : Given ε > 0, choose N to be so large that 0 < bNε−y < ε.
Now choose n to be so large that bNε > xnε > bNε− ε. Thus |xnε−y| < ε. Therefore
the subsequence xn1/k

converges to y as k →∞.

2. If x > y then xn < x for n > N : If x > y then for N > N1 surely x > bN . This
means that x > xn for all n ≥ N > N1.

Also,

Theorem 4. 1. If sn ≤ tn for n ≥ N then lim sup sn ≤ lim sup tn and lim inf sn ≤
lim inf tn.

2. lim sn = s⇔ lim sup sn = lim inf sn = s.

Proof. 1. Exercise. (Just use our original definition.)

2. Of course if the maximum and minimum of subsequential limits coincide then all
subsequences converge to the same limit and hence we are done.

Here are some examples :

1. For the sequence 1,−1, 1,−1, . . ., lim sup = 1 and lim inf = −1.

2. For a sequence consisting of all rationals (which we know are countable), the lim
sup is lim sup = ∞ and lim inf = −∞. Also, every real is a subsequential limit.
(Proof by contradiction.)

4 Special sequences

The so-called Sandwich observation/rule is quite useful : If 0 ≤ xn ≤ sn and limn→∞ sn =
0 then limn→∞ xn = 0. These sequences occur frequently.

1. If p > 0, then limn→∞
1
np

= 0.
Pf : If we want 1

np
< ε we simply need to choose n > (1/ε)1/p.

2. If p > 0, then limn→∞ p
1/n = 1.

Pf : If p = 1 the result is trivial. By taking reciprocals it follows that we only need
to consider p > 1. Of course p1/n = 1 + xn for some xn > 0. Thus (1 + xn)n = p.
Therefore 1 + nxn < p. This means that xn → 0.

3. limn→∞ n
1/n = 1.

Pf : Note that n1/n > 1 for n ≥ 2. Thus n1/n = 1 + yn where yn > 0. Thus
(1 + yn)n = n⇒ n(n− 1)yn/2 < n. This means that yn → 0.
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4. If p > 0 and α ∈ R then lim
n→∞

nα

(1 + p)n
= 0.

Pf : Note that (1 + p)n > C(n, k)pk. Suppose α + 2 > k > α + 1. Then

(1 + p)n > Cα(n− α)α+1 > C
nα+1

2α+1
(1)

This shows the result trivially.

5. If |x| < 1 then lim
n→∞

|x|n = 0.

Pf : Put α = 0.

5 Series

Given a sequence {an}, a series is naively speaking, the sum of all terms of the sequence.

More rigorously, define the sequence of partial sums sn =
n∑
k=1

ak. We say that the series

converges to L if and only if the partial sums sn → L. Otherwise we say that the series
diverges. This definition itself sheds light on the so-called Zeno paradox - Achilles allows
a head start of 10m to the tortoise (who runs at half his speed, that is, at 1m/s). After
5s he reaches the starting point of the tortoise. After 2.5 more seconds he reaches where
the tortoise was at t = 5s and so on. This “means” he can never overtake the tortoise.

The fact that real sequences converge if and only if they are Cauchy can be translated
into : A series

∑
an converges if and only if, given an ε > 0, there exists a natural Nε

such that n,m > Nε implies that |
∑m

k=n ak| < ε ∀ n,m > Nε. In particular,

Lemma 5.1. The divergence test If a series
∑∞

n=1 an converges, then limn→∞ |an| = 0.

Of course, just because an → 0 does NOT mean that
∑
an converges. The classic

example is the Harmonic series :
∑

1
n

which diverges very slowly (logarithmically). But
1/n → 0. There are several ways to prove this. (The easiest if you already know inte-
gral calculus is to bound it from below by the integral of 1

x
. But since we don’t assume

knowledge of calculus yet, we will prove it later.)

The monotonicity theorem has a counterpart for series : A series of non-negative
terms converges if and only if it is bounded.

Here is a useful little result :

Lemma 5.2. If
∑∞

k=1 |ak| converges, then so does
∑∞

k=1 ak.

Proof. Indeed, |
∑m

k=n ak| ≤
∑m

k=n |ak| < ε ∀ n,m > Nε.

The other way does not necessarily hold. (There can exist series that converge, but
do not converge if you replace the summands by their absolute values. We will discuss
absolute vs conditional convergence later.)

The next theorem is the basis for most convergence tests. (The comparison test.)
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Theorem 5. 1. If |an| ≤ bn ∀ n ≥ N for a fixed N where
∑
bn converges, then so

does
∑
|an| (and hence

∑
an).

2. If an ≥ dn ≥ 0 ∀ n ≥ N for a fixed N , and
∑
dn diverges, then so does

∑
an

diverge.

Proof. 1. Indeed,
∑m

k=n |ak| ≤
∑m

k=n bk < ε ∀n,m > Nε.

2. By monotonicity,
∑
dn is not bounded above. Therefore, given M > 0 there exists

an N so that
∑N

k=1 dk > M . This means that
∑N

k=1 ak > M . Thus
∑
an diverges.

6 Series of non-negative terms

The first famous example is that of the geometric series :
If x ≥ 1 or x ≤ −1 then 1 + x+ x2 + . . . diverges. Otherwise it converges to 1

1−x .
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