
Notes for 2 Mar (Thursday)

1 Recap

1. Defined uniform continuity and proved that continuous functions on compact sets
are uniformly continuous.

2. Proved that continuous functions take connected sets to connected sets. Derived
the Intermediate value theorem as a corollary.

3. Defined limits at infinity, classified discontinuities, and started proving that mono-
tonic functions have only jump discontinuities.

2 Assorted topics in continuity

Theorem 1. If f : (a, b) → R is monotonically increasing, then f(x+) and f(x−)
exist for every point x ∈ (a, b). Moreover, f(x+) ≤ f(y−) for x < y. Furthermore,
f(x+) = infb>t>x f(t) and f(x−) = supa<t<x f(t).

Proof. On (x, b), f(t) is bounded below by f(x). Thus M = infb>t>x f(t) exists. Likewise,
m = supa<t<x f(t) exists. For every ε > 0, M + ε > f(t) ≥ M for some b > t > x. Since
f is increasing, M + ε > f(y) ≥ M ∀ t ≥ y > x. Suppose yn > x → x. Then M + ε ≥
lim sup f(yn) ≥ lim inf f(yn) ≥ M . Since this is true for all ε, lim f(yn) = M . Since this
is true for all sequences yn > x, this means that f(yn+) = M . Likewise f(x−) = m.
Moreover, suppose x < y. Then for all y > y1 > t > x, f(t) ≤ f(y1) ≤ f(y). Since
f(x+) is also equal to (by monotonicity of f) infy1>t>x f(t) we see that f(x+) ≤ f(y1).
Therefore, f(x+) ≤ f(y−).

We can use the above result to prove that monotonic functions have at most countably
many discontinuities.

Theorem 2. Let f be monotonic on (a, b). Then it has at most countably many discon-
tinuities.

Proof. Assume without loss of generality that f is monotonically increasing. (If not,
−f is monotonically increasing and both have the same sets of discontinuities.) Let
E be the set of discontinuities of f . Note that all of these are jump discontinuities.
Moreover, f(x−) ≤ f(x) ≤ f(x+) for all x by monotonicity. Thus the only way to
have a discontinuity at x is if f(x+) − f(x−) > 0. Note that there is no t ∈ (a, b) such
that f(t) ∈ (f(x−), f(x+)). Choose a rational qx ∈ (f(x−), f(x+)). Therefore, for each
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x ∈ E we have chosen a rational qx. Now if qx = qy then surely x = y. Therefore, there is
an injection from E to a countable set. Thus E is at most countable. (Either it is finite
or an infinite subset of a countable set.)

This however does not mean that the set of discontinuities of f are isolated. In
fact, given any countable set E ⊂ (a, b) we can construct a monotonic function having
discontinuities exactly on E. Indeed, suppose the elements of E are enumerated as
x1, x2, . . .. Let cn be any sequence of positive reals such that

∑
cn converges. Define

f(x) = 0 +
∑

n such that xn<x

cn where a < x < b. Then we claim that

1. f makes sense.
Indeed, since cn is absolutely convergent, the order of summation does not matter
as far as convergence is concerned.

2. It is monotonically increasing.
If x < y, then surely {n such that xn < x} ⊂ {n such that xn < y}. Thus
f(x) ≤ f(y).

3. f(xn+)− f(xn−) = cn.
Suppose ym → xn such that ym < xn and zm → x such that zm > xn. Note
that lim f(zm) = f(xn+) and lim f(ym) = f(xn−). f(zm) ≥ cn + f(ym). Thus
f(xn+) − f(xn−) ≥ cn. Suppose f(xn+) − f(xn−) > cn. Then certainly there is
some M such that for all m > M , f(zm) − f(ym) > cn + ε for some fixed small
enough ε > 0. This means that

∑
l such that xn<xl<zm

cl > ε for all m > M . But
by absolute convergence, surely there is an m such that the left-hand side is < ε.
Indeed, reorder the natural numbers by saying that n“ < ”m if xn < xm. Therefore
for all l“ > ”L“ > ”n

∑
cl < ε. Choose m to be so large there are no xi ∈ (xn, zm)

such that i“ < ”L. This is a contradiction.

4. Everywhere else it is continuous.
Suppose x /∈ E. Let yn → x such that yn < x and zn → x such that zn > x.
Suppose f(x+) > f(x−). Fix ε < f(x+) − f(x−). The same argument as before
produces a contradiction.

3 Differentiability

Here is a familiar definition : A function f : (a, b) → R is said to be differentiable at x
with derivative f

′
(x) if

lim
h→0

f(x+ h)− f(x)

h
= f

′
(x) (1)

which is equivalent to

lim
y→x

f(y)− f(x)

y − x
= f

′
(x) (2)
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One can potentially define left and right derivatives at the endpoints but it gives only a
misleading sense of comfort. In higher dimensions such notions become tricky to handle.
So might as well consider differentiabilitiy only on an open set right from the beginning.

Theorem 3. If f is differentiable at x then it is continuous at x.

Proof.

lim
y→x

(f(y)− f(x)) = lim
y→x

f(y)− f(x)

y − x
(y − x) = f

′
(x)× 0 = 0 (3)

Then we have the usual sum, product and quotient rules of differentiation.

Theorem 4. If f
′
, g

′
exist, then f + g, αf , and fg are differentiable. If g

′ 6= 0 then so

is f/g. Also, (f + g)
′
= f

′
+ g

′
, (αf)

′
= αf

′
, (fg)

′
= f

′
g + fg

′
and (f/g)

′
= f

′
g−g′f
g2

.

Proof. 1. The first one follows from the sum rule of limits.

2.

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
= lim

h→0

(f(x+ h)− f(x))g(x+ h) + f(x)(g(x+ h)− g(x))

h

= f
′
g + g

′
f (4)

3. The quotient rule has a similar proof relying on limit laws.

The next order of business is the infamous chain rule.

Theorem 5. Suppose f : (a, b) → R is differentiable at a point x, g : E → R (where E
contains the image of f) is differentiable at f(x), then h = g ◦ f is differentiable at x
with derivative h

′
(x) = g

′
(f(x))f

′
(x).

Proof.

lim
h→0

g(f(x+ h))− g(f(x))

h
= lim

h→0

g(f(x+ h))− g(f(x))

f(x+ h)− f(x)

f(x+ h)− f(x)

h

If f(x+h) 6= f(x) for all |h| < δ for some δ, since f is continuous at x then f(x+h)−f(x) =
y goes to 0 as h → 0. Thus the first limit is g

′
(f(x)) because g is differentiable at f(x)

and the second one is f
′
(x).

But we do not have this assumption. So we have to proceed in a different way which
will eventually prove to be useful in multivariable calculus. Let y0 = f(x). Since g is
differentiable at y0, we see that

|g(y)− g(y0)− g
′
(y0)(y − y0)| ≤ ε|y − y0| (5)
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for all |y − y0| < δ. Dividing by |h| on both sides,

|g(y)− g(y0)

h
− g′

(y0)
y − y0
h
| ≤ ε|y − y0

h
| (6)

Choose h so small that yh = f(x+ h) satisfies |yh − y0| < δ. Take any sequence hn → 0.
Taking lim sup on both sides of 6 we see that

lim
n→∞

g
′
(y0)

yn − y0
hn

− ε lim sup |yn − y0
hn

| ≤ lim sup
g(yn)− g(y0)

hn

≤ lim
n→∞

g
′
(y0)

yn − y0
hn

+ ε lim sup |yn − y0
hn

|

g
′
(y0)f

′
(x)− εf ′

(x) ≤ lim sup
g(yn)− g(y0)

hn
≤ g

′
(y0)f

′
(x) + εf

′
(x) (7)

Taking ε → 0 we see that lim sup g(yn)−g(y0)
hn

= g
′
(y0)f

′
(x). The same thing applies to

lim inf. Therefore the limit is indeed g
′
(y0)f

′
(x) for any sequence. Thus the chain rule

holds.

Here is an interesting example : f(x) = x2 sin(1/x) when x 6= 0 and f(0) = 0. Note
that

lim
h→0

f(h)− f(0)

h
= lim

h→0
h sin(

1

h
) = 0 (8)

by the squeeze rule. (Notice that although I have not defined sin(x) yet, whatever it is,
we just need to know that it is bounded to conclude this.) Once we define trigonometric
functions, we will see that when x 6= 0, f

′
(x) = 2x sin(1/x) − cos(1/x). Unfortunately

the limit as x→ 0 does not exist. So this function is differentiable at x = 0 but f
′

is not
continuous there.

4 Mean value theorems

Definition : If f : X → R is a function, then f has a local maximum at p ∈ X if there
exists a δ > 0 such that f(q) ≤ f(p) for all q ∈ Bδ(p). Likewise for local minima.

Theorem 6. Let f : [a, b]→ R be a function. If it has a local maximum (or minimum)
at x ∈ (a, b) and if f

′
exists, then f

′
(x) = 0.

Proof. Suppose hn > 0 is a sequence tending to 0. Then f
′
(x) = limn→∞

f(x+hn)−f(x)
hn

≤ 0.

Likewise, if hn < 0 is a sequence tending to 0, then f
′
(x) ≥ 0. Hence f

′
(x) = 0.

We have Rolle’s theorem.

Theorem 7. If f : [a, b] → R is continuous, f(a) = f(b), and differentiable on (a, b),
then there exists a c ∈ (a, b) such that f

′
(c) = 0.

Proof. Since f is continuous, it achieves a maximum and a minimum somewhere. If both
occur on the endpoints, then f is a constant and we are done. If one of them occurs in
the interior at a point c, then by the previous theorem, f

′
(c) = 0.
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As a corollary we have Cauchy’s mean value theorem.

Theorem 8. If f and g are continuous real functions on [a, b] that are differentiable in
(a, b) then there exists a c ∈ (a, b) such that [f(b)− f(a)]g

′
(c) = [g(b)− g(a)]f

′
(c).

Proof. We have to use Rolle’s theorem somehow. Clearly the right function to choose is
h(x) = [f(b) − f(a)]g(x) − [g(b) − g(a)]f(x). It satisfies h(a) = h(b). Therefore there is
a c ∈ (a, b) such that h

′
(c) = 0.

As a consequence, if f
′ ≥ 0 throughout (a, b) then f is increasing. (Use the Cauchy

mean value theorem with g(x) = x.) Likewise for decreasing.
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