
Notes for 30 Mar (Thursday)

1 Recap

1. Gave several examples of equicontinuous functions. One way to ensure equiconti-
nuity is to have a family of continuously differentiable functions whose derivatives
|f ′

(x)| ≤M where M is independent of x and f .

2. For countable subsets of arbitrary metric spaces we proved that pointwise bounded
sequences of functions have convergent subsequences.

3. We proved that if K is compact, then continuous fn converge to f uniformly implies
that fn are equicontinuous.

4. If K is a compact subset of any metric space (equivalently, K is a compact metric
space), fn are continuous, pointwise bounded and equicontinuous, then fn are uni-
formly bounded and have a uniformly convergent subsequence. (The Arzela-Ascoli
theorem.)

2 The Weierstrass approximation theorem

This beautiful theorem is interesting for two reasons - The statement of the theorem is
itself pleasant, but more importantly there are two proofs of this theorem, each of which
illustrates a very important idea.

Suppose you want to store a continuous function on [0, 1] on a computer. You need to
give a finite description of it. If it is sin(x), you can simply write the formula (mathematica
for example, can manipulate it). If it is piecewise constant, simply store the finitely many
values (approximately by rationals). Otherwise you are in trouble. One hope is to perhaps
approximate the function by storing its values (approximately) on 1000 equally spaced
points. But this is also not good enough.

The Weierstrass approximation theorem approximates every continuous function by
polynomials. Indeed,

Theorem 1. If f : [a, b] → C is a continuous function, then there exist polynomials
Pn(x) converging uniformly to f(x). If f is real, the Pn may be taken to be real.

Without loss of generality we may assume that [a, b] is [0, 1]. As mentioned before,
there are two proofs. One of them relies on probability. The other is in Rudin and is an
analytic proof. Let’s do the probabilistic proof first. It is due to Bernstein.
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Proof. Suppose we play the following “game”. You are given a biased coin whose proba-
bility of falling on its head is x (and on its tail is 1 − x). Suppose you throw it n times
and it falls on its head k times, you are paid f(k/n) rupees where f is the given function.
(If it is complex, the money you get paid is in your head, just like the money you receive
from the government in a railway accident.) So the question is : On an average, if you
throw the coin lots of times, how much money will you win ?

Of course, on an average, the coin will fall roughly x fraction of the times tossed.
Therefore you should expect around f(x) rupees. On the other hand, the change of the
coin falling k times on its head is

(
n
k

)
xk(1 − x)n−k. Therefore the amount you will win

exactly is
n∑
k=0

(
n

k

)
xk(1 − x)n−kf(k/n). These two should be roughly equal when n is

large. Thus f is approximated by a polynomial. Moreover, if f is real, of course the
polynomial has real coefficients. This can actually be made rigorous using the (weak)
law of large numbers but we will give an elementary proof.

Let us be more precise :

|
n∑
k=0

(
n

k

)
xk(1− x)n−kf(k/n)− f(x)| = |

n∑
k=0

(
n

k

)
xk(1− x)n−kf(k/n)−

n∑
k=0

(
n

k

)
xk(1− x)n−kf(x)|

= |
n∑
k=0

(
n

k

)
xk(1− x)n−k(f(k/n)− f(x))|

Since f is continuous on a compact set, it is uniformly continuous and hence |f(x) −
f(y)| < ε/2 when |x − y| < δ. Thus we can choose n to be so large that 1

n
< δ. Then

|f(k/n)− f(x)| < ε/2 for |k/n− x| < δ. Therefore,

|
n∑
k=0

(
n

k

)
xk(1− x)n−k(f(k/n)− f(x))| < ε

2
+ 2M

∑
|k/n−x|≥δ

(
n

k

)
xk(1− x)n−k (1)

for sufficiently large n. For such k, the binomial coefficients are small. Indeed, let us
calculate how much k/n differs from x on an average :

n∑
k=0

(
k

n
− x
)2(

n

k

)
xk(1− x)n−k = x2 − 2x

n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k +

n∑
k=0

k2

n2

(
n

k

)
xk(1− x)n−k

= x2 − 2x
n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k +

1

n2

n∑
k=0

(k(k − 1) + k)

(
n

k

)
xk(1− x)n−k

= x2 − 2x2 +
1

n2
(n(n− 1)x2 + nx) =

x(1− x)

n

The left hand side of the above equation is greater
∑

|k/n−x|≥δ

(
n

k

)
xk(1−x)n−kδ2. Therefore,

we see that
∑

|k/n−x|≥δ

(
n

k

)
xk(1 − x)n−k <

x(1− x)

nδ2
. This goes to 0 as n → ∞. Hence

|Pn(x)− f(x)| < ε for large n.
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The second proof illustrates an idea in analysis borrowed from physics.

Proof. Using g(x) = f(x)−f(0)−x(f(1)−f(0)) we may assume without loss of generality
that f(0) = f(1) = 0. We now extend f to be 0 outside [0, 1]. Thus f is uniformly
continuous on the entire real line.

The rough idea is that

∫ 1

−1
δ(t − x)f(t)dt = f(x) for the Dirac delta “function”. If

you approximate the Dirac delta by polynomials, you will be in great shape.
There is a systematic way to approximate the Dirac delta. First, take (1− x2). This

is 0 when x = ±1 and reaches its maximum (just like the Dirac delta) at x = 0. Now if
you take (1−x2)n, then it is very small away from x = 0 when n is large. Unfortunately,
it is just 1 at x = 0 (unlike the Dirac delta). So let Qn(x) = cn(1 − x2)n where cn is

chosen so that

∫ 1

−1
Qn(x)dx = 1, i.e., cn =

1∫ 1

−1
(1− x2)ndx

.

Now let Pn(x) =

∫ 1

0

f(t)Qn(t − x)dt =

∫ 1

−1
f(x + t)Qn(t)dt. We hope that |Pn(x) −

f(x)| < ε for all x ∈ [0, 1] when n is large.

|Pn(x)− f(x)| = |
∫ 1

−1
Qn(t)f(t+ x)−

∫ 1

−1
Qn(t)dtf(x)|

= |
∫ 1

−1
Qn(t)(f(x+ t)− f(x))dt|

Suppose n is large. When t is very small, Qn(t) is huge, but the integral over such small t
is still small. If t is not so small, then Qn(t) is extremely small and f is bounded. So the
right hand side is expected to be small when n is large. Let us analyse Qn(t) when t is
small and when t is large. For this, we need to know how cn behaves. (To be cont’d...)
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