
Notes for 31 Mar (Friday)

1 Recap

1. Motivated and stated the Weierstrass approximation theorem : Continuous func-
tions on [a, b] can be uniformly approximated by polynomials.

2. Proved the theorem in a constructive manner using probability. Essentially, we said
that if you throw a biased coin a large number of times, you can write the average
amount of money you receive in two different ways. We compared the two ways.

3. Started proving it in Rudin’s way. The idea is to approximate the Dirac delta by
polynomials. So we chose Qn(x) = cn(1− x2)n.

2 The Weierstrass approximation theorem

Proof. (Cont’d from the last time...)
Let us analyse Qn(t) when t is small and when t is large. For this, we need to know how
cn behaves. Note that g(x) = (1− x2)n − 1 + nx2 ≥ 0 when 0 ≤ x ≤ 1.∫ 1
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Thus cn <
√
n. Thus on δ ≤ x ≤ 1 where δ > 0, Qn(x) ≤

√
n(1− δ2)n which goes to 0.

Therefore Qn(x) goes to 0 uniformly on [δ, 1].
Returning back to Pn − f we see that by uniform continuity of f we can choose a δ

so that |f(x+ t)− f(x)| < ε
2

if |t| < δ. Now

|Pn(x)− f(x)| <
∫ δ

−δ
Qn(t)

ε
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dt+

∫
|t|≥δ

Qn(t)2Mdt

<
ε

2
+ 2M

√
n(1− δ2)n < ε (1)

if n > N .

In particular, we have the following corollary : For every interval [−a, a] there is
a sequence of real polynomials Pn such that Pn(0) = 0 converging to |x| uniformly
on [−a, a]. Indeed, by Weierstrass there exist P̃n converging uniformly to |x|. Thus
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Pn = P̃n(x)− P̃n(0) do the job.

The Weierstrass approximation theorem can be used to prove a generalisation called
the Stone-Weierstrass theorem. Since it is too abstract, we will skip it. But it implies
that Weierstrass approximation holds in arbitrary number of variables.

3 Power series

A function f : (a − R, a + R) → R is called analytic if f(x) =
∞∑
n=0

cn(x − a)n where

the series converges absolutely, i.e., f is a power series. We can calculate the radius of
convergence, etc (using the Ratio test and so on from another era of this class).
The nice thing about these power series or analytic functions is that, as long as you
are within the radius of convergence, you can differentiate and integrate term-by-term.
Indeed,

Theorem 1. Suppose
∑∞

n=0 cnx
n converges for |x| < R and define f(x) =

∑∞
n=0 cnx

n.
This series converges to f uniformly on [−R + ε, R − ε] for every ε. This function is

continuous and differentiable in (−R,R) and f
′
(x) =

∫ ∞
n=1

ncnx
n−1 when x ∈ (−R,R).

Moreover,

∫ b

a

f(x)dx =
∑ cn

n+ 1
(bn+1 − an+1) where a, b ∈ (−R,R).

Proof. Recall that every power series converges absolutely within the radius of conver-
gence (Ratio test). Now when |x| ≤ R − ε, cnxn ≤ |cn(R − ε)n. Since

∑
cnx

n converges
on (−R,R), this means that R ≤ the radius of convergence. Hence

∑
cn(R − ε)n con-

verges. By the Weierstrass M-test, this means that
∑
cnx

n converges uniformly to f on
[−R + ε, R − ε]. Thus f is continuous. Now let’s compute the radius of convergence of∑
ncnx

n−1. Indeed, this converges if lim sup (n+1)|cn+1|
n|cn| |x| < 1, i.e., the radius of conver-

gence is 1
lim sup((n+1)|cn+1)/(n|cn|) which I claim is equal to that of the original series. Indeed,

this can be done either using the definition or using subsequences. Therefore
∑
ncnx

n−1

converges uniformly to a function g(x) on [−R+ε, R+ε]. By a theorem we proved earlier,
indeed g = f

′
. Since we can interchange uniform limits and RS integrals, the statement

for integration follows.

As a corollary f has derivatives of all orders in (−R,R) given by differentiating term-
by-term.

Let’s prove Abel’s theorem on the product of series, i.e., if
∑
an = A,

∑
bn = B, and

if
∑
cn = C exist where cn is the Cauchy product of an, bn then C = AB. To do so, we

consider f(x) =
∑

anx
n, g(x) =

∑
bnx

n, and h(x) =
∑
cnx

n on [0, 1]. Of course they

all converge because A,B,C exist (which are f(1), g(1), h(1)) and we know that power
series converge on intervals. So the radius of convergence is greater than or equal to 1.
Note that for x < 1 these series converge absolutely and hence f(x)g(x) = h(x). If we
manage to take the limit as x → 1 of f(x), g(x), h(x) and prove that indeed the limit is
what we expect, then we will be done. This we prove here :

2



Theorem 2. Suppose
∑
cn converges. Put f(x) =

∑∞
n=0 cnx

n when −1 < x < 1. Then
limx→1− f(x) =

∑
cn.
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