
Notes for 3 Feb (Friday)

1 A longish recap

1. Defined monotonic sequences and showed that bounded monotonic sequences con-
verge (and vice-versa).

2. Defined extended reals, lim sup, and lim inf. Recall that given a sequence, the
supremum of all subsequential limits is called lim sup. It is also characterised as
limN→∞ supn≥N xn.

3. Calculated the limits of some standard sequences.

4. Defined series, and spoke about the divergence and the comparison tests. Also paid
lip service to the geometric series.

Let us calculate some examples of lim sup and lim inf so that we understand them better.

1. The lim sup of 1,−1, 1,−1, . . . is 1 and the lim inf is −1. (Why? You can do it
using the definition if you want. The only subsequential limits are ±1.)

2. What is are the lim sup and lim inf of an = nsin(nπ/2) ? The sequence sin(nπ/2)
is 1, 0,−1, 0, 1, 0,−1, . . .. So an is 1, 20, 3−1, 40, 51, 60, . . .. In other words, the sub-
sequence 1, 5, 9, . . . converges to ∞. Therefore, lim sup is infinity. (After all, lim
sup is the maximum of all subsequential limits.) All the terms of this sequence are
positive. Therefore any subsequential limit is ≥ 0. Now the subsequence 1, 1

3
, 1
7
, . . .

converges to 0. Thus lim inf an = 0.

3. Find the lim sup and lim inf of xn = sin(nπ/3). So the sequence is
√
3
2
,
√
3
2
, 0,−

√
3
2
,−
√
3
2
, 0, . . ..

For the sake of variety let’s do this using the other characterisation of lim sup and
lim inf.

lim sup an = lim
N→∞

sup
n≥N

sin(nπ/3)

= lim
N→∞

√
3

2
=

√
3

2
lim inf an = lim

N→∞
inf
n≥N

sin(nπ/3)

= lim
N→∞

−
√

3

2
= −
√

3

2
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4. Suppose an and bn are two series such that bn → b. Then lim sup(an + bn) =
lim sup an + b (and likewise for lim inf) -
Indeed, suppose we take a convergent subsequence an1+bn1 , an2+bn2 , . . ., then indeed
it converges to limk→∞ ank + b (Note that if Cn = An + Bn and Bn converge, then
so does An.) Therefore the supremum of all subsequential limits is lim sup an + b.

Another small, subtle point : Of course we know that a sequence converges if and only
if all its subsequences converge to the same limit. However, what if we know that all of
its convergent subsequences converge to the same limit ? Can we still conclude that the
sequence converges ? (i.e., that there are no divergent subsequences ?) The answer is
yes. It is provided by the following lemma.

Lemma 1.1. If every subsequence xni of xn has a subsequence xnij that converges to the
same limit L, then xn itself converges to L.

Proof. Suppose not. That is, there exists an ε > 0 such that for every natural N , there is
a nN > N so that |xnN −L| ≥ ε. Now the subsequence xni has a convergent subsequence
that converges to L. But this is a contradiction.

Why does this imply what we want ? This is because every subsequence does have a
convergent subsequence (convering to its lim sup for example). Since we assumed that
every convergent subsequence converges to the same limit, by the previous lemma, this
means that the original sequence converges (i.e. there are no divergent subsequences).

2 Non-negative series

What is interesting is the following theorem of Cauchy. (Don’t know how or why he came
up with it but it is surprisingly useful.)

Theorem 1. Suppose a1 ≥ a2 ≥ . . . ≥ 0. Then
∞∑
n=1

an converges if and only if
∞∑
n=0

2na2n =

a1 + 2a2 + 4a4 + . . . does.

Proof. 1. Assume that
∞∑
n=0

2na2n = a1 + 2a2 + 4a4 + . . . converges.

First we claim that
m∑
k=0

2ka2k ≥
2m+1−1∑
k=1

ak. This can be proven by induction. Indeed,

this is true for m = 0. Suppose it is true for m, then for m+ 1,

m+1∑
k=0

2ka2k =
m∑
k=0

2ka2k + 2m+1a2m+1

≥
2m+1−1∑
k=1

ak + a2m+1 + a2m+1 + . . . ≥
2m+1−1∑
k=1

ak + a2m+1 + a2m+1+1 + . . .+ a2m+2−1 =
2m+2−1∑
k=1

ak.

(1)

Thus since
∞∑
n=0

2na2n is bounded, so is
∞∑
n=1

an and by non-negativity, it converges.

2



2. Assume that
∞∑
n=0

2na2n = a1 + 2a2 + 4a4 + . . . diverges.

Indeed, note that a1 + 2a2 ≤ 2a1 + 2a2, 4a4 ≤ 2(a3 + a4), 8a8 ≤ 2(a5 + a6 + a7 + a8)
and so on. By induction, 2ma2m ≤ 2(a2m−1+1 + . . . + a2m). This along with the
monotonicity/non-negativity thing proves the result.

The first application is towards the so-called p-series. (The Harmonic series is a special
case of this.)

Theorem 2.
∑ 1

np
converges when p > 1 and diverges when p ≤ 1.

Proof. Indeed, applying Cauchy’s theorem, we have to check
∑ 2n

2np
=
∑ 1

2n(p−1)
from

which the result follows using the geometric series.

Assuming the existence of the natural log function (which we will discuss later anyway
and this theorem will not be used anywhere else in life, so it is not circular),

Theorem 3.
∑ 1

n(lnn)p
converges when p > 1 and diverges when p ≤ 1.

Proof. Indeed, applying Cauchy’s theorem, we have to check
∑ 2n

2n(ln 2n)p
=
∑ 1

(ln 2)pnp

which reduces it to the convergence of the p-series.

3 The number e

Definition : e =
∞∑
n=0

1

n!
. How do we know it converges ? Well n! ≥ 2n−1 ∀ n ≥ 1. Use

the comparison test comparing with a geometric series. That also shows that e < 3. Of
course e > 2.

But very commonly, it is defined in another way.

Theorem 4.

e = lim
n→∞

(
1 +

1

n

)n
(2)

Proof. The only tool we have at our disposal is the binomial theorem. We don’t even
know if the right hand side converges. Fortunately, we have another tool at our disposal
- lim sup and lim inf.

Let sn =
∑n

k=0
1
k!

and tn =
n∑
k=0

(
n

k

)
1

nk
=

n∑
k=0

1

k!
(1− 1

n
)(1− 2

n
) . . . (1− k − 1

n
).

Now intuitively, as n → ∞ it seems reasonable that tn gets close to sn. At least it is
obvious that tn ≤ sn ∀ n. So we want to say lim tn ≤ e but we do not know whether the
limit exists. Fortunately, we can say lim sup tn ≤ e. If we just prove that lim inf tn ≥ e
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we will be done.
What we really feel like doing is just take the goddamned limit as n → ∞ of the pesky
factors like (1 − 1

n
) without affecting the 1

k!
terms. There is a nice trick to do this.

Namely, if n ≥ m, then tn ≥
∑m

k=0
1
k!

(1− 1
n
)(1− 2

n
) . . . (1− k−1

n
). Now we may take the

lim inf as n → ∞ whilst keeping m fixed. Therefore, lim inf tn ≥
∑m

k=0
1
k!
∀ m. Hence

lim inf tn ≥ e.

Here is another important result :

Theorem 5. The number e is irrational.

Proof. Suppose e = p
q
. An easy geometric series comparison shows that 0 < e− sn < 1

n!n
.

Thus 0 < q!(e− sq) < 1
q
. But the difference of two integers cannot be less than a fraction

and yet be positive.

Actually e is not even algebraic, i.e., there is no polynomial whose coefficients are
rational numbers such that e is a root of such a polynomial. (Notice that we can prove that
algebraic numbers are countable, meaning that there are lots of non-algebraic numbers.
But this is our first example. They are actually hard to come by!) But this is not easy
to prove. As a consequence, e2 is not rational, or for that matter e1000 is not rational.

4 Ratio and root tests

Given
∑
an let L = lim sup |an|1/n.

Theorem 6. If

1. L < 1 the series converges.

2. L > 1 it diverges.

3. L = 1, pray because this test tells you nothing.

Proof. The idea is to compare with the geometric series. Roughly speaking, when n is
large, the series roughly looks like a geometric series with the common ratio L.

Indeed, suppose L < 1. Then L + ε < 1 for a small ε > 0. By the properties of
lim sup we know that there exists an N so that |an|1/n < L + ε ∀ n ≥ N . This means
that |an| ≤ (L+ ε)n ∀ n ≥ N . By the comparison test this means that

∑
|an| converges.

If L > 1 and finite (the infinity case is trivial), then L− ε > 1 for a small ε > 0. Since
L = limN→∞ supn≥N |an|1/n we see that for a large N the quantity |an|1/n > L−ε ∀ n > N .
Therefore |an| > (L− ε)n ∀ n > N . Thus by the comparison test, the series diverges.

Likewise, here is the ratio test.

Theorem 7. Let α = lim sup |an+1|
|an| . (Assume that none of the an are 0.) If

1. If α < 1 the series converges.
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2. If |an+1|
|an| ≥ 1 for all n ≥ N then it diverges.

Proof. The philosophy is exactly the same as the previous proof. If α < 1, then so is
α+ ε < 1 for a small ε > 0. By properties of lim sup we see that |an+1|

|an| < α+ ε ∀ n ≥ N .

Thus |am| ≤ α + ε)m−N |aN | ∀ m ≥ N . By the comparison test the series converges.

Likewise, if |an+1|
|an| ≥ 1 for all large n ≥ N , then |am| ≥ aN and hence limm→∞ |am| 6= 0.

This shows (by the divergence test) that the series diverges.

The root test is slightly more powerful than the ratio test (although I always prefer
to use the ratio test). Indeed,

Theorem 8.

lim inf
|an+1|
|an|

≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup
|an+1|
|an|

(3)

Proof. We will prove the lim sup inequality. (The lim inf case is similar.) Firstly note that
|an|
|aN |

= |an|
|an−1|

|an−1|
|an−2| . . .. Suppose L = lim sup |an+1|

|an| . If L = ∞ then it is trivial. Assume

L to be finite. Then by properties of lim sup, L + ε > |an|
|an−1| ∀ n > Nε. Therefore,

|an|1/(n−Nε) < |aNε|1/(n−Nε)(L+ ε) ∀ n > Nε. Thus

|an|1/n < |aNε|1/n(L+ ε)(n−Nε)/n

Taking lim sup on both sides and using a standard limit we see that lim sup |an|1/n ≤
L+ ε ∀ ε > 0. This allows us to conclude the result.
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