Notes for 3 Mar (Friday)

1 Recap

- 1. Proved that monotonic functions have only jump discontinuities and that it implied that monotonic functions have at most countably many discontinuities (but they can occur on any countable set).
- 2. Defined differentiability and proved the usual rules for taking derivatives.
- 3. Proved the mean value theorems. (The most general being Cauchy's.)

2 Continuity of derivatives

Here is a cool result about derivatives. They satisfy the intermediate value property. In particular, they cannot have jump discontinuities.

Theorem 1. Suppose $f : (a, b) \to \mathbb{R}$ is a differentiable function which is continuous on [a, b]. Let $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

Proof. Let $g(x) = f(t) - \lambda t$. Since g is continuous on [a, b] it attains its maximum somewhere. It cannot the maximum on a or b because g'(a) < 0 and g'(b) > 0. Therefore it attains it on $x \in (a, b)$. Therefore g'(x) = 0.

3 L'Hospital's rule

Basically we know that in order to evaluate limits of the form 0/0 or ∞/∞ , we replace the limit by the ratio of the limit of the derivatives. But we need a more accurate statement.

Theorem 2. Suppose f and g are real and differentiable in (a, b), $g(x) \neq 0$ on (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$, where $-\infty \leq a < b \leq \infty$. Suppose A is an extended real number such that

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} \to A$$

If $\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x)$ or if $\lim_{x \to a^+} g(x) = \infty$ then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = A$.

Proof. We will prove the theorem when a and L are finite. The general case is not much different. (See Rudin.)

Note that (exercise) saying $\lim_{x\to a^+} f(x) = L$ is equivalent to saying that for any given $\epsilon > 0$ there exists a $\delta > 0$ such that $a < x < a + \delta$ implies that $|f(x) - L| < \epsilon$. Similar statements hold even if L and a are extended reals.

Suppose $x_n \to a$ and $x_n > a$. We will prove everything for this sequence. (Since the sequence is arbitrary, we will be done.)

Choose an N such that $|x_n - a| < \frac{\delta}{2}$ for all n > N. Now for any m, l > N, we have $|x_m - x_l| < \delta$ by the triangle inequality. Let us choose δ to be so small that $|\frac{f'(y)}{g'(y)} - A| < \epsilon$ for all $0 < y - a < \delta$. Now by Cauchy's MVT

$$\frac{f(x_m) - f(x_l)}{g(x_m) - g(x_l)} = \frac{f'(\theta)}{g'(\theta)} \tag{1}$$

Therefore

$$A - \epsilon \le \frac{f(x_m) - f(x_l)}{g(x_m) - g(x_l)} \le A + \epsilon$$
⁽²⁾

There are two cases now :

1. $g(x_l) \to 0$ and $f(x_l) \to 0$ In this case simply take the limit as $l \to \infty$ on both sides. (Note that because $g'(x) \neq 0, g(x_m) \neq g(x_l)$.) Then we will get

$$A - \epsilon \le \frac{f(x_m)}{g(x_m)} \le A + \epsilon \tag{3}$$

Now fix ϵ and take lim sup and lim inf to see that $A - \epsilon \leq \liminf \frac{f(x_m)}{g(x_m)} \leq \limsup \frac{f(x_m)}{g(x_m)} \leq A + \epsilon$. Since this is true for all $\epsilon > 0$, we are done.

2. $g(x_l) \to \infty$. Suppose L is so large that $g(x_l) > g(x_m)$ for all l > L. Therefore

$$(A-\epsilon)\frac{g(x_l) - g(x_m)}{g(x_l)} \le \frac{f(x_l) - f(x_m)}{g(x_l)} \le (A+\epsilon)\frac{g(x_l) - g(x_m)}{g(x_l)}$$
(4)

$$\Rightarrow (A - \epsilon) \frac{g(x_l) - g(x_m) + f(x_m)}{g(x_l)} \le \frac{f(x_l)}{g(x_l)} \le (A + \epsilon) \frac{g(x_l) - g(x_m) + f(x_m)}{g(x_l)} \quad (5)$$

Taking lim sup and lim inf

$$(A - \epsilon) \le \liminf \frac{f(x_l)}{g(x_l)} \le \limsup \frac{f(x_l)}{g(x_l)} \le (A + \epsilon)$$
(6)

Taking $\epsilon \to 0$ we get the result.

A similar statement holds for a limit at b. Here are some counterexamples where L'Hospital cannot be applied.

- 1. $\lim_{x\to\infty} \frac{x+\sin(x)}{x}$. The limit (by the limit laws and the squeeze rule) is 1. But if we naively apply L'Hospital we will conclude that it ought to be $\lim_{x\to\infty}(1+\cos(x))$ which does not exist. (The point is that the limit of the ratio of the derivatives must exist.)
- 2. $\lim_{x\to 0} \frac{x^2 \sin(x^{-4})}{x}$. The limit by the squeeze rule is 0. If we apply L'Hospital, then we will say that it is equal to $\lim_{x\to 0} (2x \sin(x^{-4}) 4x^{-3} \cos(x^{-4}))$ which does not exist.

Here is a nice corollary of L'Hospital :

If f is continuous at a, and f' exists in some interval containing a except perhaps a itself. Suppose $\lim_{x\to a} f'(x)$ exists, then f'(a) exists and equals the limit.

Proof. Let $h(x) = \frac{f(x) - f(a)}{x - a}$. Consider h(a+) and h(a-). Both of them can be evaluated using L'Hospital to be $\lim_{x\to a} f'(x)$. Thus $f'(a) = \lim_{x\to a} f'(x)$.

4 Higher order derivatives and Taylor's theorem

If f is defined on an interval containing x, then we can ask whether f' exists. Inductively, if $f^{(n)}$ is defined on an interval, then we ask whether the next higher derivative $f^{(n+1)}$ exists. The point of higher derivatives is Taylor's theorem.

Theorem 3. Suppose $f : [a,b] \to \mathbb{R}$ is continuous such that f^{n-1} is also continuous on (a,b) and $f^n(t)$ exists for every $t \in (a,b)$. Let α and β be distinct points of (a,b). Define $P(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (x-\alpha)^k$. Then there exists a point $c \in [\alpha,\beta]$ such that $f(\beta) = P(\beta) + \frac{f^{(n)}(c)}{n!} (\beta - \alpha)^n$.

Proof. Firstly, notice that we may without loss of generality assume that $\alpha = 0$. Indeed, if we manage to prove for $\alpha = 0$, then consider the function $g(x) = f(x + \alpha)$ and apply Taylor's theorem to this function to recover the original statement.

Suppose we manage to prove Taylor assuming that $f^{(k)}(0) = 0$ for $0 \le k \le n-1$, we will be done by simply considering g(x) = f(x) - P(x) and applying the result.

So we just have to prove that $f(x) = \frac{f^{(n)}(c)}{n!}x^n$ for some $0 \le c \le x$ assuming the first n-1 derivatives (along with the function itself) vanish at 0. Consider $g(t) = f(t) - \frac{f(x)}{x^n}t^n$. Note that if prove that $g^{(n)}(c) = f^{(n)}(c) - n!\frac{f(x)}{x^n} = 0$ for some n then we will be done. Indeed, since g(0) = 0 = g(x) there is a $c_1 \in [0, x]$ such that $g'(c_1) = 0$. Note that $g' = f' - \frac{f(x)}{x^n}nt^{n-1}$. Since $g'(0) = 0 = g'(c_1)$ there is a c_2 such that $g''(c_2) = 0$. Likewise, we can proceed to show that $g^{(n)}(c) = 0$ for some $c \in [0, x]$.