Notes for 5 April (Wednesday)

1 Recap

1. Proved the Weierstrass approximation theorem by approximating the Dirac delta by polynomials.
2. Proved a corollary that $|x|$ can be approximated by polynomials vanishing at 0 .
3. Proved that power series converge uniformly within their radius of convergence, and that you can integrate and differentiate term-by-term within the radius of convergence.
4. Wanted to prove Abel's theorem : If $\sum a_{n}=A, \sum b_{n}=B$ and $\sum c_{n}=C$ where c_{n} is the Cauchy product of a_{n} and b_{n}, then $C=A B$. Our strategy was to write $f(x)=\sum a_{n} x^{n}, g(x)=\sum b_{n} x^{n}$ and $h(x)=\sum c_{n} x^{n}$ and use the theory of power series to attack this.s

2 Power series

Theorem 1. Suppose $\sum c_{n}$ converges. Put $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ when $-1<x<1$. Then $\lim _{x \rightarrow 1^{-}} f(x)=\sum c_{n}$.

Proof. We have to somehow introduce the partial sums $s_{n}=c_{0}+c_{1} \ldots c_{n}$ (by the way put $\left.s_{-1}=0\right)$. Now $\sum_{n=0}^{m} c_{n} x^{n}=\sum\left(s_{n}-s_{n-1}\right) x^{n}=(1-x) \sum_{n=0}^{m-1} s_{n} x^{n}+s_{m} x^{m}$. Take $m \rightarrow \infty$ to get $f(x)=(1-x) \sum s_{n} x^{n}$. Let $s=\lim _{n \rightarrow \infty} s_{n}$. Now $|f(x)-s|=(1-x) \sum\left(s_{n}-s\right) x^{n}$. If $n>N$ then $\left|s_{n}-s\right|<\frac{\epsilon}{2}$. Thus $|f(x)-s|<\frac{\epsilon}{2}+(1-x) \sum_{n=0}^{N}\left|\left(s_{n}-s\right) \| x\right|^{n}<\epsilon$ if $1-\delta<x<\delta$.

We now prove a theorem regarding interchange of the order of summation :
Theorem 2. Given a double sequence $a_{i j}$ suppose that $\sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i}$ and that $\sum b_{i}$ converges. Then $\sum_{i} \sum_{j} a_{i j}=\sum_{j} \sum_{i} a_{i j}$.
Proof. Here is an unconventional way to prove this. (By the way, if you take a course on measure theory, this theorem is a trivial consequence of the so-called dominated convergence theorem.)
Let E be a countable set consisting of x_{0}, x_{1}, \ldots where $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Define
$f_{i}\left(x_{0}\right)=\sum_{j=1}^{\infty} a_{i j}$ and $f_{i}\left(x_{n}\right)=\sum_{j=1}^{n} a_{i j}$. Also let $g(x)=\sum_{i=1}^{\infty} f_{i}(x)$ where $x \in E$. This means that each f_{i} is continuous at x_{0}. Since $\left|f_{i}(x)\right| \leq b_{i}$ and $\sum b_{i}$ converges, by the Weierstrass M-test, $\sum f_{i}$ converges uniformly to $g(x)$. But for uniform convergence, limits and sums can be interchanged $\left(g(x)\right.$ is continuous at $\left.x_{0}\right)$, i.e.,

$$
\begin{gathered}
\sum_{i} \sum_{j} a_{i j}=\sum_{i} f_{i}\left(x_{0}\right)=g\left(x_{0}\right) \\
=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} f_{i}\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \sum_{j=1}^{n} a_{i j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sum_{i} a_{i j}=\sum_{j} \sum_{i} a_{i j} .
\end{gathered}
$$

If two power series converge to the same function on an open interval $(-R, R)$, then are they identical ? The following theorem answers this question in the affirmative. Actually a much weaker condition is enough but we will not pursue that.

Theorem 3. Suppose $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges in $|x|<R$. If $-R<a<R$ then f can be expanded in a power series about $x=a$ which converges in $|x-a|<R-|a|$ and $f(x)=\sum_{n} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$.

Proof. Note that $f(x)=\sum c_{n}(x-a+a)^{n}=\sum_{n} \sum_{m=0}^{n} c_{n}\binom{n}{m} a^{n-m}(x-a)^{m}$ which we hope equals $\sum_{m=0}^{\infty}\left[\sum_{n=m}^{\infty}\binom{n}{m} c_{n} a^{n-m}\right](x-a)^{m}$. This hope can be justified using the previous theorem. Indeed the previous theorem shows that this is possible if $\sum_{n=0}^{\infty} \sum_{m=0}^{n} \left\lvert\, c_{n}\binom{n}{m} a^{n-m}(x-\right.$ $a)^{m} \mid$ converges. But this is the same as $\sum_{n}\left|c_{n}\right|(|x-a|+|a|)^{n}$ which converges if $|x-a|+|a|<R$. The formula for the coefficients follows from differentiating term-by-term.

3 Exponentials and Logarithms

Define $E(z)=\sum \frac{z^{n}}{n!}$. The ratio test shows that this converges absolutely for all $z \in \mathbb{C}$. Therefore, $E(z) E(w)$ is the Cauchy product of the series which is $\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} z^{k} w^{n-k}=$ $\sum \frac{(z+w)^{n}}{n!} z^{n}=E(z+w)$. Clearly $E(0)=1$. Let us calculate the derivative : Since it is a power series, we may differentiate term-by-term to see that indeed $E^{\prime}(z)=E(z)$. Also, $E(1)=e$ (the number we defined earlier as a limit). Now the multiplication formula (by induction) implies that $E(n)=e^{n}$. If $q=n / m$ then $(E(q))^{m}=E(q m)=E(n)=e^{n}$. Therefore for positive rational $q, E(q)=e^{q}$. Since $E(q) E(-q)=1$ this holds for all rationals.

Since $E(z) E(-z)=1$ for all z, this means that $E(z) \neq 0$ for any z. Moreover, if z is a positive real, clearly the power series is positive (it has positive terms). If z is a negative real, then of course $E(z)=1 /(E(-z))$ is positive. Therefore $E^{\prime}>0$ (and $E(z) \rightarrow \infty$ as $z \rightarrow \infty)$. This means that E is increasing. If we define $e^{x}=\sup e^{p}$ where $p<x$ and p is rational, then the properties of $E(z)$ (continuity and monotonicity) so far, show that $E(x)=e^{x}$.

Lastly, e^{x} changes faster than any polynomial. Indeed, L'Hospital's rule easily proves that $\lim _{n \rightarrow \infty} x^{n} e^{-x}=0$ for every n and $x \in \mathbb{R}$.

Since e^{x} is strictly increasing (it is $1-1$) and its range is $(0, \infty)$ on \mathbb{R}, it has an inverse function $\ln (x):(0, \infty) \rightarrow \mathbb{R}$ which is $1-1$. If $a<b$ then $e^{x}:[a, b] \rightarrow\left[e^{a}, e^{b}\right]$ is continuous and $1-1$ on a compact set and therefore $\ln :\left[e^{a}, e^{b}\right] \rightarrow[a, b]$ is continuous for every a, b. Thus \ln is a continuous function. Now if $w=\ln (u v)$, then $e^{w}=u v$. If $u=\ln (x)$, $v=\ln (y)$, then $e^{w}=e^{x} e^{y}=e^{x+y}$. Thus $\ln (u v)=\ln (u)+\ln (v)$. Now we shall prove that $\ln (x)$ is differentiable on its domain and $\ln ^{\prime}=\frac{1}{x}$. Indeed,

$$
\begin{align*}
\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}= & \lim _{h \rightarrow 0} \frac{\ln (x(1+h / x))-\ln (x)}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h / x)}{h} \\
& =\frac{1}{x} \lim _{h \rightarrow 0} \frac{\ln (1+h / x)}{h / x} . \tag{1}
\end{align*}
$$

So if we prove that the derivative exists at 1 (and the derivative is 1) then we will be done. (Cont'd....)

