Notes for 5 April (Wednesday)

1 Recap

1. Proved the Weierstrass approximation theorem by approximating the Dirac delta
by polynomials.

2. Proved a corollary that |z| can be approximated by polynomials vanishing at 0.

3. Proved that power series converge uniformly within their radius of convergence,
and that you can integrate and differentiate term-by-term within the radius of
convergence.

4. Wanted to prove Abel’s theorem : If > a, = A, > b, = B and >_ ¢, = C where
¢, is the Cauchy product of a, and b,, then C' = AB. Our strategy was to write
flx) = > aza™, g(x) = > bya™ and h(z) = > c 2™ and use the theory of power
series to attack this.s

2 Power series

Theorem 1. Suppose Y ¢, converges. Put f(x) = " c,x™ when —1 <z < 1. Then
lim, - f(z) = cu.

Proof. We have to somehow introduce the partial sums s, = co + ¢1...¢, (by the way

m m—1
put s_; = 0). Now Z cpx’ = Z(sn—sn,l)x” =(l—2x) Z S+ smx™. Take m — oo
n=0 n=0
to get f(z) = (1 —x) ) spa™. Let s = limy, 00 Sp. Now |f(x) —s| = (1 —2) > (s, — s)a™.
If n > N then |s, —s| < 5. Thus |[f(z) —s] < §+ (1 — ) iLV:O |(sn, — 9)||z|" < €if
1-d<ax<i. O

We now prove a theorem regarding interchange of the order of summation :

Theorem 2. Given a double sequence a;; suppose that Z lai;| = b; and that ) b; con-

j=1
verges. Then 3 . > 5 ai; =), Qi

Proof. Here is an unconventional way to prove this. (By the way, if you take a course on
measure theory, this theorem is a trivial consequence of the so-called dominated conver-
gence theorem.)

Let E be a countable set consisting of xg,x1,... where x, — zy as n — oo. Define
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filxg) = Zaij and fi(z,) = Z?Zl aij. Also let g(z ZfZ ) where z € E. This
j=1

means that each f; is continuous at xy. Since |fi(z)| < b and > b; converges, by the

Weierstrass M-test, > f; converges uniformly to g(z). But for uniform convergence, limits

and sums can be interchanged (g(z) is continuous at zy), i.e.,

Zzaij = Zfz(l’o) = 9(350)
= Jim glo) = Jim 3 i —J:%ZZ%—,}:H;OZZ% 2.2
7 7

i=1 j=1 i
]

If two power series converge to the same function on an open interval (—R, R), then
are they identical 7 The following theorem answers this question in the affirmative.
Actually a much weaker condition is enough but we will not pursue that.

Theorem 3. Suppose f(z ch " converges in |x| < R. If —R < a < R then f

can be expanded in a power series about x = a which converges in |v —a| < R — |a| and

() (g
):anf )(x—a)”.

Proof. Note that f(z) = Z cn(x—a+a)” Z Z cn( ) "M (z—a)™ which we hope

n m=0

equals > >°_[5>* (")¢,a™™](x — a)™. This hope can be justified using the previous

m=0 n=m

o0 n

theorem. Indeed the previous theorem shows that this is possible if Z Z ey (n ) a" " (x—
n=0 m=0 m

a)™| converges. But this is the same as Y |c,|(|z — a| + |a])™ which converges if

|z — a| + |a] < R. The formula for the coefficients follows from differentiating term-
by-term. O

3 Exponentials and Logarithms

Define E(z) = > Z;. The ratio test shows that this converges absolutely for all z € C.

1
Therefore, F(z)E(w) is the Cauchy product of the series which is Z Z k'—zkw”_k =
n=0 k=0

Z wz” = E(z+w). Clearly E(0) = 1. Let us calculate the derivative : Since it is
n!

a power series, we may differentiate term-by-term to see that indeed E'(2) = E(z). Also,
E(1) = e (the number we defined earlier as a limit). Now the multiplication formula (by
induction) implies that F(n) = €". If ¢ = n/m then (E(q))™ = E(gm) = E(n) = "
Therefore for positive rational ¢, F(q) = e?. Since E(q)E(—q) = 1 this holds for all
rationals.



Since E(z)E(—z) =1 for all z, this means that E(z) # 0 for any z. Moreover, if z is a
positive real, clearly the power series is positive (it has positive terms). If z is a negative
real, then of course E(z) = 1/(E(—=z)) is positive. Therefore E' > 0 (and E(z) — oo as
z — 00). This means that F is increasing. If we define e = supe” where p < z and p
is rational, then the properties of F(z) (continuity and monotonicity) so far, show that
E(x) = e€".

Lastly, e changes faster than any polynomial. Indeed, L’Hospital’s rule easily proves
that lim,,_,, 2"e~" = 0 for every n and = € R.

Since e” is strictly increasing (it is 1-1) and its range is (0,00) on R, it has an inverse
function In(x) : (0,00) — R which is 1 —1. If a < b then €® : [a, b] — [e?, €] is continuous
and 1 — 1 on a compact set and therefore In : [e?, e’] — [a,b] is continuous for every a,
b. Thus In is a continuous function. Now if w = In(uv), then e = uv. If u = In(x),
v =1In(y), then ¥ = e*e¥ = **¥. Thus In(uv) = In(u) + In(v). Now we shall prove that
In(z) is differentiable on its domain and In = 1. Indeed,

lim In(x 4+ h) — In(x) — lim In(z(1+4 h/x)) — In(z) — lim In(1+ h/z)
h—0 h—0 h h—0 h
1
_ Ly A+ /) (1)
rh0  hjx

So if we prove that the derivative exists at 1 (and the derivative is 1) then we will be
done. (Cont’d....)



	Recap
	Power series
	Exponentials and Logarithms

