
Notes for 5 April (Wednesday)

1 Recap

1. Proved the Weierstrass approximation theorem by approximating the Dirac delta
by polynomials.

2. Proved a corollary that |x| can be approximated by polynomials vanishing at 0.

3. Proved that power series converge uniformly within their radius of convergence,
and that you can integrate and differentiate term-by-term within the radius of
convergence.

4. Wanted to prove Abel’s theorem : If
∑
an = A,

∑
bn = B and

∑
cn = C where

cn is the Cauchy product of an and bn, then C = AB. Our strategy was to write
f(x) =

∑
anx

n, g(x) =
∑
bnx

n and h(x) =
∑
cnx

n and use the theory of power
series to attack this.s

2 Power series

Theorem 1. Suppose
∑
cn converges. Put f(x) =

∑∞
n=0 cnx

n when −1 < x < 1. Then
limx→1− f(x) =

∑
cn.

Proof. We have to somehow introduce the partial sums sn = c0 + c1 . . . cn (by the way

put s−1 = 0). Now
m∑
n=0

cnx
n =

∑
(sn−sn−1)xn = (1−x)

m−1∑
n=0

snx
n+smx

m. Take m→∞

to get f(x) = (1−x)
∑
snx

n. Let s = limn→∞ sn. Now |f(x)− s| = (1−x)
∑

(sn− s)xn.
If n > N then |sn − s| < ε

2
. Thus |f(x) − s| < ε

2
+ (1 − x)

∑N
n=0 |(sn − s)||x|n < ε if

1− δ < x < δ.

We now prove a theorem regarding interchange of the order of summation :

Theorem 2. Given a double sequence aij suppose that
∞∑
j=1

|aij| = bi and that
∑
bi con-

verges. Then
∑

i

∑
j aij =

∑
j

∑
i aij.

Proof. Here is an unconventional way to prove this. (By the way, if you take a course on
measure theory, this theorem is a trivial consequence of the so-called dominated conver-
gence theorem.)
Let E be a countable set consisting of x0, x1, . . . where xn → x0 as n → ∞. Define
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fi(x0) =
∞∑
j=1

aij and fi(xn) =
∑n

j=1 aij. Also let g(x) =
∞∑
i=1

fi(x) where x ∈ E. This

means that each fi is continuous at x0. Since |fi(x)| ≤ bi and
∑
bi converges, by the

Weierstrass M-test,
∑
fi converges uniformly to g(x). But for uniform convergence, limits

and sums can be interchanged (g(x) is continuous at x0), i.e.,∑
i

∑
j

aij =
∑
i

fi(x0) = g(x0)

= lim
n→∞

g(xn) = lim
n→∞

∞∑
i=1

fi(xn) = lim
n→∞

∞∑
i=1

n∑
j=1

aij = lim
n→∞

n∑
j=1

∑
i

aij =
∑
j

∑
i

aij.

If two power series converge to the same function on an open interval (−R,R), then
are they identical ? The following theorem answers this question in the affirmative.
Actually a much weaker condition is enough but we will not pursue that.

Theorem 3. Suppose f(x) =
∞∑
n=0

cnx
n converges in |x| < R. If −R < a < R then f

can be expanded in a power series about x = a which converges in |x− a| < R − |a| and

f(x) =
∑
n

f (n)(a)

n!
(x− a)n.

Proof. Note that f(x) =
∑

cn(x−a+a)n =
∑
n

n∑
m=0

cn

(
n

m

)
an−m(x−a)m which we hope

equals
∑∞

m=0[
∑∞

n=m

(
n
m

)
cna

n−m](x − a)m. This hope can be justified using the previous

theorem. Indeed the previous theorem shows that this is possible if
∞∑
n=0

n∑
m=0

|cn
(
n

m

)
an−m(x−

a)m| converges. But this is the same as
∑

n |cn|(|x − a| + |a|)n which converges if
|x − a| + |a| < R. The formula for the coefficients follows from differentiating term-
by-term.

3 Exponentials and Logarithms

Define E(z) =
∑

zn

n!
. The ratio test shows that this converges absolutely for all z ∈ C.

Therefore, E(z)E(w) is the Cauchy product of the series which is
∞∑
n=0

n∑
k=0

1

k!(n− k)!
zkwn−k =∑ (z + w)n

n!
zn = E(z+w). Clearly E(0) = 1. Let us calculate the derivative : Since it is

a power series, we may differentiate term-by-term to see that indeed E
′
(z) = E(z). Also,

E(1) = e (the number we defined earlier as a limit). Now the multiplication formula (by
induction) implies that E(n) = en. If q = n/m then (E(q))m = E(qm) = E(n) = en.
Therefore for positive rational q, E(q) = eq. Since E(q)E(−q) = 1 this holds for all
rationals.
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Since E(z)E(−z) = 1 for all z, this means that E(z) 6= 0 for any z. Moreover, if z is a
positive real, clearly the power series is positive (it has positive terms). If z is a negative
real, then of course E(z) = 1/(E(−z)) is positive. Therefore E

′
> 0 (and E(z)→∞ as

z → ∞). This means that E is increasing. If we define ex = sup ep where p < x and p
is rational, then the properties of E(z) (continuity and monotonicity) so far, show that
E(x) = ex.

Lastly, ex changes faster than any polynomial. Indeed, L’Hospital’s rule easily proves
that limn→∞ x

ne−x = 0 for every n and x ∈ R.
Since ex is strictly increasing (it is 1-1) and its range is (0,∞) on R, it has an inverse

function ln(x) : (0,∞)→ R which is 1−1. If a < b then ex : [a, b]→ [ea, eb] is continuous
and 1 − 1 on a compact set and therefore ln : [ea, eb] → [a, b] is continuous for every a,
b. Thus ln is a continuous function. Now if w = ln(uv), then ew = uv. If u = ln(x),
v = ln(y), then ew = exey = ex+y. Thus ln(uv) = ln(u) + ln(v). Now we shall prove that
ln(x) is differentiable on its domain and ln

′
= 1

x
. Indeed,

lim
h→0

ln(x+ h)− ln(x)

h
= lim

h→0

ln(x(1 + h/x))− ln(x)

h
= lim

h→0

ln(1 + h/x)

h

=
1

x
lim
h→0

ln(1 + h/x)

h/x
. (1)

So if we prove that the derivative exists at 1 (and the derivative is 1) then we will be
done. (Cont’d....)
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