
Notes for 5th Jan (Thursday)

1 Recap

1. “Defined” sets and subsets. Stated the Zermelo-Fraenkel axioms of set theory with
the axiom of choice. (ZFC.)

2. Stated Peano’s axioms for the set of natural numbers (which is a subset of the
infinite set in ZFC).

2 Natural numbers (cont’d....)

One can then give recursive definitions for addition, ordering, multiplication, and expo-
nentiation.
Addition : 0 + m = m. If n + m = k then (n + +) + m = k + +. From this we can
prove the usual properties, i.e., commutativity, associativity, and the cancellation law of
addition. We prove commutativity here just to show the flavour of the proofs.

Theorem 1. m+n=n+m for all natural numbers n and m.

Proof. We use induction on n. For n = 0, 0 + m = m by definition. Let us first prove
that m + 0 = m for every natural number m. This is a lemma.

Lemma 2.1. m+0=m

Proof. For 0, 0+0 = 0 by definition. If this is true for m, then (m++)+0 = (m+0)++ =
m + + by definition and induction hypothesis. Therefore this lemma is true by the
principle of induction.

If commutativity is true for n (with adding every natural number m) then we need
to prove that m + (n + +) = (n + +) + m, i.e., that m + (n + +) = (n + m) + +, i.e. by
induction hypothesis that m + (n + +) = (m + n) + +. We shall induct on m now.
For m = 0, this is true by the lemma. If true for m, then (m++)+(n++) is by definition
(m+(n++))++. By induction hypothesis indeed the last expression is ((m+n)++)++.
But ((m + +) + n) + + = ((m + n) + +) + + by definition. Thus we are done.

We still need to see how positivity and addition are related. A natural n is called
positive if n 6= 0.
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1. If a is positive and b is a natural number, then a + b is positive.
Indeed for b = 0, a + 0 = 0 + a = a and therefore positive. If true for b, then
a + (b + +) = (a + b) + + and by Peano’s axioms this cannot be 0.

2. If a + b = 0 then a = 0 and b = 0. This is a corollary of the previous proposition.

3. If a is positive, then there exists exactly one natural b so that b+ + = a. The proof
is similar to the ones above.

Multiplication : 0 × m = 0. If n × m = k then (n + +) × m = k + m. One can as
before prove all the usual properties of natural numbers (commutativity, associativity,
distributivity, no zero divisors, and cancellation).
Exponentiation : m0 = 1 for m > 0. If mn = k then mn++ = k ×m.
Ordering : We say that n ≥ m if n = m + a for some natural number a. If n 6= m then
we say that n > m.

1. Ordering is reflexive, transitive, anti-symmetric (a ≥ b, b ≥ a implies that a = b).

2. Addition preserves order (a ≥ b implies that a + c ≥ b + c).

3. a < b iff a + + ≤ b.

4. a < b iff b = a + d for positive d.

5. Trichotomy : For any two a, b, either a < b, a = b, or a > b.

6. If a > b, then ac > bc if c is positive.

7. Euclidean algorithm : If a is positive and a ≤ b, then b = na+ r for a unique n and
0 ≤ r < a.

The properties of ordering can be used to prove the strong principle of induction.

3 Cardinality

The cardinality of a finite set A is intuitively speaking, the number of elements of A. For
infinite sets, obviously this notion does not make sense. However, one can still ask if two
infinities are the same (!) in the following manner.
Two sets A and B are said to have the same cardinality if there exists a bijection from
A to B.
We define a set to be finite and having cardinality n if it is in bijection with {1 ≤ i ≤ n}.
You might think that it is circular because at the very foundation of mathematics we as-
sumed the notions of “finite” (as in finite alphabet for instance). However we are talking
about “finite sets” here (treat it as a single noun if it makes more sense to you). This is
the only way to define the notion.
One can prove that set of natural numbers is infinite. Indeed if it is in bijection with
{1 ≤ i ≤ n} then natural numbers would have to be bounded (because if not, then
there are more than n natural numbers and finite cardinality can be easily proven to be
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unique). But this is a contradiction by Peano’s axiom (“no ceiling” axiom).
However infinite sets are weird. Define a number to be even if n = 2k and odd if
n = 2k + 1.
Firstly, every number is definitely either even or odd but not both. This follows from the
Euclidean algorithm. Also, the k is unique given n.
Secondly, the set of even numbers is in bijection with natural numbers despite being
contained in it. Indeed, map an even number n = 2k to the corresponding k. This is a
well-defined function. It is an injection because if 2k = 2l then by the cancellation law
k = l. It is a surjection too. Likewise, positive naturals have the same cardinality as
naturals. Any set that has the cardinality of naturals is said to be countably infinite.

Before we proceed further, a sequence of elements of X is simply a function f : N+ →
X. It is informally written as x1, x2, . . .. Suppose f : N+ → N+ is any ordering preserving
1− 1 map, then xf(1), xf(2), . . . is called a subsequence. The notion of set of all sequences
is a perfectly well-defined set in ZFC because it is a subset of the power set of N ×X.

Countable sets represent the “smallest” infinity, i.e.,

Theorem 2. Every infinite subset A of a countable set X is countable.

Proof. Without loss of generality we may assume that X = N (why?). The bijection
between N and A is simply k goes to the (k + 1)th smallest element of A. But to make
sense of this, we need to prove that this definition makes sense.
Firstly, natural numbers are well-ordered, i.e., every non-empty subset has a smallest
element. (By smallest I mean an element x such that every other element is ≥ x.)
Indeed, consider a subset A. Since it is non-empty, there exists a natural number n ∈ A.
Consider the subset Bn of N given by {x ∈ A|x ≤ n}. Let’s prove that this has a smallest
element by induction. If n = 0, we are done. If this is true for n, then Bn++ = Bn∪n + +
(by the trichotomy law). If Bn is non-empty, we are done by the induction hypothesis
(because n + + > n). If Bn is empty, then the smallest element is n + +.
Secondly, the kth smallest element of A is defined as follows :
The 1st smallest element is the smallest element of A.
If the first k smallest elements have been found and put in a set Gk, then the (k + 1)th

smallest element is the smallest element of A−Gk.

Lots of sets are countable :

Theorem 3. N× N is countable.

Proof. Firstly, 2n13n2 represent different numbers for different values of n1 and n2. Indeed,
if 2a3b = 2c3d and without loss of generality a ≥ c and b ≤ d then a = c+x, d = b+y. In
other words, 2c+x3b = 2c3b+y. We haven’t proven properties of exponentiation yet (and
we actually will not prove them because the proofs are very similar and annoying). But
assuming those we can see that 2x = 3y. This we claim is impossible unless x = y = 0 :
2x is even for any x 6= 0 (Induction).
3y is odd for any y (Induction).
This means that the map N × N → N given by (a, b) → 2a3b is injective. Therefore by
the previous theorem we are done.
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As a consequence we have the following useful result. (“Countable unions of countable
sets is countable.”)

Theorem 4. If Ei where i ∈ N are countable sets, then U = ∪iEi is countable.

Proof. Let fi : N → Ei be bijections. Then consider the map g : N × N → U given by
g(i, j) = fi(j). This is clearly a surjection. Using the axiom of choice to choose unique
pre-images, we get an injection from U to N×N. Since an infinite subset of a countable
set is countable, we are done. Surely, there must be a way to do this without the axiom
of choice.....
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