
Notes for 6 April (Thursday)

1 Recap

1. Proved Abel’s theorem.

2. Proved that if a double series converges absolutely, then we can interchange the
order of summation.

3. Proved that if two power series agree on an interval, then they are identical.

4. Defined the exponential and proved its usual properties. Defined ln as its inverse
and proved that it is continuous. Reduced the proof of differentiability to differen-
tiability at x = 1.

2 Exponentials and Logarithms

(Cont’d...) If we prove that the derivative exists at 1 (and the derivative is 1) then we
will be done. Here is a way to prove it : We shall prove that limh→0+ ln(1+h)/h = 1 (the
left-handed limit is similar). To do so we take an arbitrary sequence hn > 0 converging
to 0. We shall prove that lim sup and lim inf are both 1. Indeed, let’s only consider lim
sup (lim inf is similar). So

lim sup
ln(1 + hn)

hn
= lim

k→∞

ln(1 + hnk)

hnk
= M

wn = ln(1 + hn)⇒ ewn = 1 + hn ⇒
wn
hn

(1 +
w2
n

2!hn
+ . . .) = 1

Note that since hn > 0, so is wn > 0. The above equation implies that M is definitely
finite. Moreover, it is easy to see (by comparison) that the infinte series part goes to 1.
Thus M = 1.

Since ln
′
(y) = 1

y
, this means that ln(y) =

∫ y

1

dx

x
. It is also easy to see from the properties

of exponentials that ln(uq) = q ln(u) for rational q. By continuity and monotonicity (i.e.
sup lnuq = lim lnuq = ln limuq = ln supuq) we see that this is true for all reals. This
means that xα = eα ln(x) for all real α and x > 0. Therefore xα is differentiable and its
derivative is αxα−1. Lastly, here is one more property of logarithms : Logs change slower
than any polynomial, i.e., limx→∞ x

−α ln(x) = 0 for every α > 0 by L’Hospital’s rule.
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3 Trigonometric functions

We finally define trigonometric functions. We shall only define sin and cos and prove that
they correspond to their geometric definition.
Indeed, define C(x) = eix+e−ix

2
and S(x) = eix−e−ix

2i
. It is easy to see that indeed C and

S are real. Also, eix = C(x) + iS(x). Now eixe−ix = |eix|2 = 1. Therefore C2 + S2 = 1.
Moreover, C

′
= −S and S

′
= C.

We need to prove that C and S are periodic with period 2π for some real number
π. To do this, let’s prove first that C vanishes at a positive number somewhere. Indeed,
C(0) = 1. So it C does not vanish anywhere on the positive line, then C > 0 everywhere.
But S

′
= C > 0. Thus S(x) > 0 when x > 0 and < 0 when x < 0. This means that

if x < y then 2 ≥ C(x) − C(y) = −
∫ x

y

S(t)dt > −S(x)(x − y). This is a contradiction

when y is large.
Let x0 be the smallest positive number such that C(x0) = 0. This number exists

because C(0) 6= 0 and the set of zeroes is closed (so the infimum is attained). Define
π = 2x0. Therefore C(π

2
) = 0 and S(π/2) = 1. Hence by the addition formulae, eπi+1 = 0

and e2πi = 1. Hence ez+2πi = ez. We have the following theorem.

Theorem 1. 1. ez is periodic with period 2πi.

2. C = cos and S = sin are periodic with period 2π

3. If 0 < t < 2π then eit 6= 1.

4. If z is a complex number such that |z| = 1 then there is a unique t ∈ [0, 2π) such
that eit = z.

Proof. 1. We just need to show that 2π is the smallest positive number t0 such that
ez+t0i = ez. Indeed if there was a smaller t0, then et0i = 1. Hence et0i/2 = ±1. Thus
S(t0/2) = 0. But S(t0/2) = 2S(t0/4)C(t0/4) and therefore C(t0/4) = 0 (because
on (0, π

2
) we know that S is increasing). But this is a contradiction because π

2
is

the smallest positive zero of C.

2. Ditto.

3. Since 0 < t < π/2 this means that eit = x + iy satisfies 0 < x < 1 and 0 < y < 1.
Assume that eit0 = x + iy is a real number. This means that ei4t0 = (x + iy)4 is
also real. But e4it0 = (x+ iy)4 = x4 − 6x2y2 + y4 + 4ixy(x2 − y2). If 0 < t < π

2
we

showed that 0 < x < 1 and 0 < y < 1. Thus x2 − y2 = 0. Since x2 + y2 = 1 this
means that x2 = y2 = 1

2
. Thus e4it0 = −1. Thus eit0 6= 1.

4. If there are two such ts then we produce a contradiction to the previous assertion.
Let’s prove existence of such a t. If 1 ≥ x ≥ 0, 1 ≥ y ≥ 0 and x2 + y2 = 1, then
since cos : [0, π

2
]→ [0, 1] is surjective because the endpoints go to the endpoints, it

is continuous, and decreasing. Likewise, so is sin surjective in that region. Thus
there exists a t such that cos(t) = x. Since sin(t)2 + cos2(t) = 1 this means that
sin(t) = y. For the other regions we can reduce them to this region. For example,
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if x < 0 and y ≥ 0 then −iz is in the correct region and hence −iz = eit. Thus
z = ei(t+

π
2
) and so on.

Finally, we show that indeed the parameter t in the closed differentiable simple curve
γ(t) = eit where t ∈ [0, 2π] is the angle, i.e., t is the length of the arc joining γ(0) and
γ(t). Indeed, γ

′
(t) = ieit. Therefore |γ′| = 1.

Finally, the length of the hypotenuse is 1, the adjacent side is the x-coordinate of γ,
namely, cos and the opposite is sin.

4 Fundamental theorem of algebra

Theorem 2. If P (z) = a0 + a1z + . . . anz
n where n ≥ 1 and an 6= 0. Then P (z) has a

complex root if ai are complex.

Proof. By scaling P (z) we may assume that an = 1. Put µ = inf |P (z)|. Suppose that
µ 6= 0. We will derive a contradiction. The intuition is that for large z, P (z) is huge and
hence µ is actually attained on some closed disc. This will be shown to be a problem.

If |z| = R, then |P (z)| ≥ Rn[1− |an−1|R−1− . . .. Since the right hand side goes to ∞
as R →∞ this means that |P (z)| > µ if |z| > R0. Since |P | is continuous on the closed
disc with radius R0, |P | attains its minimum on the disc.Thus |P (z0)| = µ.

Suppose µ 6= 0. Then the function Q(z) = P (z+z0)
P (z0)

is a nonconstant polynomial such

that Q(0) = 1 and |Q(z)| ≥ 1 for all z. There is an integer k such that bk 6= 0 and Q(z) =
1+bkz

k+. . . bnz
n. By a previous theorem there exists a θ such that eikθbk = −|bk|. If r > 0

and rk|bk| < 1 then |1+bkr
keikθ| = 1−rk|bk|. Thus |Q(reiθ)| ≤ 1−rk(|bk|−r|bk+1|− . . .).

If r is small then |Q(reiθ) < 1. A contradiction.
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