Notes for 6 April (Thursday)

1 Recap

- 1. Proved Abel's theorem.
- 2. Proved that if a double series converges absolutely, then we can interchange the order of summation.
- 3. Proved that if two power series agree on an interval, then they are identical.
- 4. Defined the exponential and proved its usual properties. Defined ln as its inverse and proved that it is continuous. Reduced the proof of differentiability to differentiability at x = 1.

2 Exponentials and Logarithms

(Cont'd...) If we prove that the derivative exists at 1 (and the derivative is 1) then we will be done. Here is a way to prove it : We shall prove that $\lim_{h\to 0^+} \ln(1+h)/h = 1$ (the left-handed limit is similar). To do so we take an arbitrary sequence $h_n > 0$ converging to 0. We shall prove that lim sup and lim inf are both 1. Indeed, let's only consider lim sup (lim inf is similar). So

$$\limsup \frac{\ln(1+h_n)}{h_n} = \lim_{k \to \infty} \frac{\ln(1+h_{n_k})}{h_{n_k}} = M$$
$$w_n = \ln(1+h_n) \Rightarrow e^{w_n} = 1 + h_n \Rightarrow \frac{w_n}{h_n} (1 + \frac{w_n^2}{2!h_n} + \dots) = 1$$

Note that since $h_n > 0$, so is $w_n > 0$. The above equation implies that M is definitely finite. Moreover, it is easy to see (by comparison) that the infinite series part goes to 1. Thus M = 1.

Since $\ln'(y) = \frac{1}{y}$, this means that $\ln(y) = \int_{1}^{y} \frac{dx}{x}$. It is also easy to see from the properties of exponentials that $\ln(u^q) = q \ln(u)$ for rational q. By continuity and monotonicity (i.e. $\sup \ln u^q = \lim \ln u^q = \ln \lim u^q = \ln \sup u^q$) we see that this is true for all reals. This means that $x^{\alpha} = e^{\alpha \ln(x)}$ for all real α and x > 0. Therefore x^{α} is differentiable and its derivative is $\alpha x^{\alpha-1}$. Lastly, here is one more property of logarithms : Logs change slower than any polynomial, i.e., $\lim_{x\to\infty} x^{-\alpha} \ln(x) = 0$ for every $\alpha > 0$ by L'Hospital's rule.

Trigonometric functions 3

We finally define trigonometric functions. We shall only define sin and cos and prove that they correspond to their geometric definition.

Indeed, define $C(x) = \frac{e^{ix} + e^{-ix}}{2}$ and $S(x) = \frac{e^{ix} - e^{-ix}}{2i}$. It is easy to see that indeed C and S are real. Also, $e^{ix} = C(x) + iS(x)$. Now $e^{ix}e^{-ix} = |e^{ix}|^2 = 1$. Therefore $C^2 + S^2 = 1$. Moreover, C' = -S and S' = C.

We need to prove that C and S are periodic with period 2π for some real number π . To do this, let's prove first that C vanishes at a positive number somewhere. Indeed, C(0) = 1. So it C does not vanish anywhere on the positive line, then C > 0 everywhere. But S' = C > 0. Thus S(x) > 0 when x > 0 and < 0 when x < 0. This means that if x < y then $2 \ge C(x) - C(y) = -\int_{y}^{x} S(t)dt > -S(x)(x-y)$. This is a contradiction

when y is large.

Let x_0 be the smallest positive number such that $C(x_0) = 0$. This number exists because $C(0) \neq 0$ and the set of zeroes is closed (so the infimum is attained). Define $\pi = 2x_0$. Therefore $C(\frac{\pi}{2}) = 0$ and $S(\pi/2) = 1$. Hence by the addition formulae, $e^{\pi i} + 1 = 0$ and $e^{2\pi i} = 1$. Hence $e^{z+2\pi i} = e^z$. We have the following theorem.

1. e^z is periodic with period $2\pi i$. Theorem 1.

- 2. $C = \cos$ and $S = \sin$ are periodic with period 2π
- 3. If $0 < t < 2\pi$ then $e^{it} \neq 1$.
- 4. If z is a complex number such that |z| = 1 then there is a unique $t \in [0, 2\pi)$ such that $e^{it} = z$.
- 1. We just need to show that 2π is the smallest positive number t_0 such that Proof. $e^{z+t_0i} = e^z$. Indeed if there was a smaller t_0 , then $e^{t_0i} = 1$. Hence $e^{t_0i/2} = \pm 1$. Thus $S(t_0/2) = 0$. But $S(t_0/2) = 2S(t_0/4)C(t_0/4)$ and therefore $C(t_0/4) = 0$ (because on $(0, \frac{\pi}{2})$ we know that S is increasing). But this is a contradiction because $\frac{\pi}{2}$ is the smallest positive zero of C.
 - 2. Ditto.
 - 3. Since $0 < t < \pi/2$ this means that $e^{it} = x + iy$ satisfies 0 < x < 1 and 0 < y < 1. Assume that $e^{it_0} = x + iy$ is a real number. This means that $e^{i4t_0} = (x + iy)^4$ is also real. But $e4it_0 = (x + iy)^4 = x^4 - 6x^2y^2 + y^4 + 4ixy(x^2 - y^2)$. If $0 < t < \frac{\pi}{2}$ we showed that 0 < x < 1 and 0 < y < 1. Thus $x^2 - y^2 = 0$. Since $x^2 + y^2 = 1^2$ this means that $x^2 = y^2 = \frac{1}{2}$. Thus $e^{4it_0} = -1$. Thus $e^{it_0} \neq 1$.
 - 4. If there are two such ts then we produce a contradiction to the previous assertion. Let's prove existence of such a t. If $1 \ge x \ge 0, 1 \ge y \ge 0$ and $x^2 + y^2 = 1$, then since $\cos: [0, \frac{\pi}{2}] \to [0, 1]$ is surjective because the endpoints go to the endpoints, it is continuous, and decreasing. Likewise, so is sin surjective in that region. Thus there exists a t such that $\cos(t) = x$. Since $\sin(t)^2 + \cos^2(t) = 1$ this means that $\sin(t) = y$. For the other regions we can reduce them to this region. For example,

if x < 0 and $y \ge 0$ then -iz is in the correct region and hence $-iz = e^{it}$. Thus $z = e^{i(t+\frac{\pi}{2})}$ and so on.

Finally, we show that indeed the parameter t in the closed differentiable simple curve $\gamma(t) = e^{it}$ where $t \in [0, 2\pi]$ is the angle, i.e., t is the length of the arc joining $\gamma(0)$ and $\gamma(t)$. Indeed, $\gamma'(t) = ie^{it}$. Therefore $|\gamma'| = 1$.

Finally, the length of the hypotenuse is 1, the adjacent side is the x-coordinate of γ , namely, cos and the opposite is sin.

4 Fundamental theorem of algebra

Theorem 2. If $P(z) = a_0 + a_1 z + ... a_n z^n$ where $n \ge 1$ and $a_n \ne 0$. Then P(z) has a complex root if a_i are complex.

Proof. By scaling P(z) we may assume that $a_n = 1$. Put $\mu = \inf |P(z)|$. Suppose that $\mu \neq 0$. We will derive a contradiction. The intuition is that for large z, P(z) is huge and hence μ is actually attained on some closed disc. This will be shown to be a problem.

If |z| = R, then $|P(z)| \ge R^n [1 - |a_{n-1}|R^{-1} - \dots$ Since the right hand side goes to ∞ as $R \to \infty$ this means that $|P(z)| > \mu$ if $|z| > R_0$. Since |P| is continuous on the closed disc with radius R_0 , |P| attains its minimum on the disc. Thus $|P(z_0)| = \mu$.

Suppose $\mu \neq 0$. Then the function $Q(z) = \frac{P(z+z_0)}{P(z_0)}$ is a nonconstant polynomial such that Q(0) = 1 and $|Q(z)| \ge 1$ for all z. There is an integer k such that $b_k \neq 0$ and $Q(z) = 1 + b_k z^k + \ldots + b_n z^n$. By a previous theorem there exists a θ such that $e^{ik\theta}b_k = -|b_k|$. If r > 0 and $r^k|b_k| < 1$ then $|1 + b_k r^k e^{ik\theta}| = 1 - r^k|b_k|$. Thus $|Q(re^{i\theta})| \le 1 - r^k(|b_k| - r|b_{k+1}| - \ldots)$. If r is small then $|Q(re^{i\theta}) < 1$. A contradiction.