Notes for 7 April, Friday

1. (Rudin chapter 3 Problem 7) Prove that the convergence of > a,, implies the con-
vergence of ) ‘/TOT" if a, > 0.

Answer : Since a,, > 0, because monotone increasing sequences converge if and only
if they are bounded, > a,, converges if and only if 22;1 a, < C for some C' and all

N. Likewise, we just need to prove that 224:1 @ is bounded above independent
of M.

Indeed, S [an = < /> any/ Y =5 by the Cauchy-Schwarz inequality. The right
hand side is bounded above because > a,, is bounded above and _ 1/n? converges
by the p-series test.

2. (Rudin chapter 3 problem 9) Find the radius of convergence of each of the following
power series :

(a) >on’z"

. _ 1 _ 1 S U
Answer : For all of these problems, R = s @77 = Tmsup® = e/ 1.

In what follows, all the lim sups turn out to be limits and hence we can use
limit laws without mention or apology.

27L n
(b) > 5=
. on (n41)! .
Answer : R = lim 2—, (n++1) = lim 2 = ~o.
n! 2n

2
(c) X &e"

Answer : R = limi—z(gﬂf{z =1
TL3 n
(d) > 2™
Answer : R = lim g—j% = limS% = 3.

3. (Rudin chapter 3 problem 12 part a) ) Suppose a,, > 0 and > a,, converges. Put
Ty = Z a.,. Prove that

m=n



if m < n, and deduce that »_ 2 diverges.

Answer : By the way, this problem can be solved using the Cauchy-Schwarz in-
equality too. But we will do it Rudin’s way. In what follows, all the |.| signs go
away because a,, > 0.
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Now Z >1——. If n = oo then r,, — 0 because > a, supposedly converges.
Tk Tm

This means that Z — > 1 for all m which is a problem because if it is supposed
to converge, then as m — oo this is supposed to go to 0.

4. (Rudin chapter 4 problem 6) If f: F C (X,dx) — (Y,dy) is a function, then the
graph of f is the set of points (z, f(z)) in the metric space (X XY, dxxy ((x,y), (a,b)) =
Vdx(z,a)?+ dy(a,b)?). Suppose E is a compact subset of X. Prove that f is con-
tinuous on F if and only if its graph is a compact subset of X x Y.

Answer : Firstly, note that the projection maps m(z,y) = x and m(z,y) = y are
continuous because dx (m(z,y), 71 (20, yo)) = dx (z,20) < \/dx(z,70)2 + dy (y,y0)% <
dxxy((z,y), (xo,%0)). So taking § = € we are done. Likewise for .

(a) If f is continuous on F :

To prove that a subset of a metric space is compact, we simply need to prove
that every sequence a, has a convergent subsequence a,, (Indeed, see the
remarks after theorem 2.41 in Rudin. Compactness is equivalent to saying
that every infinite set has a limit point. Since every infinite set contains a
sequence, and that limit points are indeed limits of subsequences, this is the
case). If (x,, f(x,) is a sequence in the graph, then since z, is a sequence
in F, it has a convergent subsequence x,, — x. Thus f(x,, ) — f(z) b

continuity in Y. This means that for & large enough, dy(f(x), f(zn,)) < §

and dx (v, zy,) < 5. Thus dx.y((Tn,, f(2n,)), (7, f(z)) < \/€/2 < e. Hence

we are done.

(b) If the graph is a compact subset of X x Y :
We just have to show that f~!(C) is closed where C is a closed subset of Y.
Now f~HC) = ;' (7, (C) N Graph) which is closed because the graph is
compact and hence closed, and m; are continuous.

5. (Rudin chapter 4 problem 12) A uniformly continuous function of a uniformly con-

tinuous function is uniformly continuous. State this more precisely and prove it.

Answer : f: SCR —-Randg: f(S) C ECR — R are uniformly continuous,
then go f : S — R is uniformly continuous. Indeed, given an € > 0, there is a ;.



(depending only on €) such that |a — b| < 01, implies that |g(a) — g(b)] < €. Now
given di. there exists a . (depending only on §;. which depends only on ¢€) such
that |f(x) — f(y)| < 61 whenever |z — y| < .. Thus |x — y| < J. implies that

9(f (@) —g(fw)] <e

. (Rudin chapter 4 problem 15) Call a mapping of X to Y open if f(V) is an open
subset of Y whenever V' is an open subset of X.
Prove that every open continuous map from R to itself is monotonic.

Answer : Suppose f is not monotonic. That means that without loss of generality
we may assume that there exist a < ¢ < b such that f(a) < f(b) and f(b) < f(c).
Since f : [a,b] — R is continuous, by the extreme value theorem, this means that
f attains a maximum at a point zy € [a,b]. Clearly zy € (a,b) because of the
existence of ¢. Now (zg — €,29 + €) C (a,b) for small enough €. Since f is open,
f(xo — €, 29+ €) ought to be an open subset of R containing f(z(). But this means
that small values larger than f(zg) should also be in the image of f which is a
contradiction.

. (Rudin chapter 5 problem 11, See the hint in Rudin) Suppose f is defined in a neigh-
bourhood of z and suppose f" (z) exists. Show that lim,_ f(“h)Jrf(h”g’h)’Zf(x) —
f"(x) and show by a counterexample that the limit may exist even if f(z) does
not.

Answer : By assumption f exists in a neighbourhood of z. By the L’Hospital rule

limy, o+ fath)+] (h‘?h)*zf @) — limy, o+ W provided the right hand side

exists. Indeed, by definition of the derivative

)t LD @) @) = )

h—0 h h—0 h

(2)

which means that the desired limit is indeed f”. A similar argument holds for
h—0".

As for the counterexample, let g(z) = —‘%2 when x < 0 and 22/2 when z > 0. Thus

g(h)+g(=h

g (z) = |z|. Hence g" does not exist at 0 but limy,_,o £*3 ) — 0 and hence exists.

. (Rudin chapter 5 problem 15, See the hint in Rudin) Suppose f is a twice-differentiable
function on R, and My, My, M, are the suprema of |f|,|f'|,|f respectively on
(a,00). Prove that M7 < 4MyM,. (Note the small correction : The strategy
outlined in Rudin can only help with this problem. If you have an arbitrary a as
in Rudin, it may not work.)

Answer : Since f is twice-differentiable, Taylor’s theorem shows that there is some
0 € (z,z + 2h) such that f(x + 2h) = f(x) + f(2)2h + £ (0)2h%. Thus f (z) =
£ (f(x +2h) — f(x)) — nf"(0). This means that |f (z)| < hM, + 2. Choosing h
appropriately (to saturate the the AM-GM inequality), hMy + My/h = 2+/MsM,.
Thus M12 S 4MOM2.
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(Rudin chapter 6 problem 4) If f(z) = 0 for all irrational z, f(z) = 1 for all rational
x, prove that f is not Riemann integrable on [a, b] for any a < b.

Answer : Indeed, if P is any partition, then U(P, f) — L(P, f) = >_(M; —m;)Az; =
> Az; = b — a (because the rationals and irrationals are dense) and hence cannot
be made less an e for small e.

(Rudin chapter 6 problem 7) Suppose f : [0,1] — R is Riemann integrable on [c, 1]
1 1
for every ¢ > 0. Define / fdx = lim / fdx if the limit exists and is finite.
0 c

c—0t

(a) If f is Riemann integrable on [0, 1] show that this definition of the integral
agrees with the old one.

(b) Construct a function such that the above limit exists, although it fails to exist
with |f| in the place of f.

Answer :

(a) Indeed, if f is Riemann integrable, then | fcl fd:z:—fol fdz| =1 [} fdz| < Me —
0.

! -1 1
— (—_1)» 11 i = — 4 = i
(b) Take f(x) = (—1)"n on [y, 5;]- Thus Clir(%/c fdx = 5 + 3 which we

know converges by the alternating series test. But / | f|dz is the Harmonic

series which diverges.

Ltk
L2

converges uni-

(Rudin chapter 7 problem 6) Prove that f,(x) = Z(—l)

k=1
formly in every bounded interval but does not converge absolutely for any value of x.

n

Answer : Suppose z € [a,b]. Then |f,(z) — f(z)] = | Z (—1)

k=m+1

1 —1)*

b Z = + | Z ( k) | < € when n,m > N because Y b*% and Z% converge
m+1

and hence are Cauchy. Thus f, converges uniformly. If f,, converged absolutely,

then so would have > xz';k -> i—z = " 1 which is a contradiction.

22+ k

(Rudin chapter 7 problem 13 part a)) Assume that f,, is a sequence of monotoni-
cally increasing functions from R — [0, 1]. Prove that there is a function f and a
sequence ny such that f(x) = limy_ fn, (z) for every z € R.

Answer : Consider the countable set of all rationals. By a theorem in the class,
fn has a subsequence f,, converging pointwise to a function f on all rationals.
Define f(x) = sup,<, f(q). My claim is that f is increasing, i.e., f(z) < f(y)
when z < y. Note that f,, (z) < f,,(y) for all k. Taking limits, this shows that
the statement is trivial for rational x and y. Now suppose ¢1 < z < ¢ < y
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are such that f(q1) < f(x) < f(q1) + € and f(q2) < f(y) < f(g2) + €. Thus
f@) < f(q1) + € < flga) + € < f(y) + €. Since this is true for all € > 0, indeed
f(z) < f(y). Thus f has at most countable many discontinuities.

Suppose x is a point where f is continuous. Then we claim that indeed f(z) =
limy, 00 fr, (). Indeed, f(q) < f(z) < f(q) + € when ¢ < z < g+ 6. Thus
Jfom(@) — € < f(x) < fun.(q) +2¢ < fu, (x) 4+ 2¢ when m > M,. This means
that f(x) < liminf,, f, (z)+ 2¢ for every e. Thus f(z) < liminf,, f,, (). Now
f(x) > f(g+ 2) —€if nis large keeping ¢ + + > . Thus f(z) > f,,. (¢ + 1) —e>
fan () — € when m and n are large. Taking limsup on both sides, we see that
f(z) > limsup f,, () — € for all e. Hence f(x) = lim f,, (x).

Now on the set E consisting of countable many discontinuities of f, there is a
further subsequence of f,, which we call g, converging to a function g pointwise
(where g = f on rationals and places where f is continuous).



