
Notes for 7 April, Friday

1. (Rudin chapter 3 Problem 7) Prove that the convergence of
∑
an implies the con-

vergence of
∑ √

an
n

if an ≥ 0.

Answer : Since an ≥ 0, because monotone increasing sequences converge if and only
if they are bounded,

∑
an converges if and only if

∑N
n=1 an < C for some C and all

N . Likewise, we just need to prove that
∑M

n=1

√
an
n

is bounded above independent
of M.

Indeed,
∑M

n=1

√
an

1
n
≤

√∑
an

√∑
1
n2 by the Cauchy-Schwarz inequality. The right

hand side is bounded above because
∑
an is bounded above and

∑
1/n2 converges

by the p-series test.

2. (Rudin chapter 3 problem 9) Find the radius of convergence of each of the following
power series :

(a)
∑
n3zn

Answer : For all of these problems, R = 1
lim sup |an|1/n

= 1
lim supn3/n = 1

limn3/n = 1.

In what follows, all the lim sups turn out to be limits and hence we can use
limit laws without mention or apology.

(b)
∑

2n

n!
zn

Answer : R = lim 2n

n!
(n+1)!
2n+1 = lim n+1

2
=∞.

(c)
∑

2n

n2 z
n

Answer : R = lim 2n

n2

(n+1)2

2n+1 = 1
2
.

(d)
∑

n3

3n
zn.

Answer : R = lim n3

3n
3n+1

(n+1)3
= lim 3 n3

(n+1)3
= 3.

3. (Rudin chapter 3 problem 12 part a) ) Suppose an > 0 and
∑
an converges. Put

rn =
∞∑
m=n

am. Prove that

am
rm

+ . . .+
an
rn

> 1− rn
rm
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if m < n, and deduce that
∑

an
rn

diverges.

Answer : By the way, this problem can be solved using the Cauchy-Schwarz in-
equality too. But we will do it Rudin’s way. In what follows, all the |.| signs go
away because an > 0.

am
rm

+ . . .+
an
rn

>
am
rm

+ . . .+
an
rm
≥ rm − rn

rm
= 1− rn

rm
(1)

Now
k=n∑
k=m

ak
rk

> 1− rn
rm

. If n→∞ then rn → 0 because
∑
an supposedly converges.

This means that
∞∑
k=m

ak
rk

> 1 for all m which is a problem because if it is supposed

to converge, then as m→∞ this is supposed to go to 0.

4. (Rudin chapter 4 problem 6) If f : E ⊂ (X, dX) → (Y, dY ) is a function, then the
graph of f is the set of points (x, f(x)) in the metric space (X×Y, dX×Y ((x, y), (a, b)) =√
dX(x, a)2 + dY (a, b)2). Suppose E is a compact subset of X. Prove that f is con-

tinuous on E if and only if its graph is a compact subset of X × Y .

Answer : Firstly, note that the projection maps π1(x, y) = x and π2(x, y) = y are
continuous because dX(π1(x, y), π1(x0, y0)) = dX(x, x0) ≤

√
dX(x, x0)2 + dY (y, y0)2 ≤

dX×Y ((x, y), (x0, y0)). So taking δ = ε we are done. Likewise for π2.

(a) If f is continuous on E :
To prove that a subset of a metric space is compact, we simply need to prove
that every sequence an has a convergent subsequence ank

(Indeed, see the
remarks after theorem 2.41 in Rudin. Compactness is equivalent to saying
that every infinite set has a limit point. Since every infinite set contains a
sequence, and that limit points are indeed limits of subsequences, this is the
case). If (xn, f(xn) is a sequence in the graph, then since xn is a sequence
in E, it has a convergent subsequence xnk

→ x. Thus f(xnk
) → f(x) by

continuity in Y . This means that for k large enough, dY (f(x), f(xnk
)) < ε

2

and dX(x, xnk
) < ε

2
. Thus dX×Y ((xnk

, f(xnk
)), (x, f(x)) <

√
ε2/2 < ε. Hence

we are done.

(b) If the graph is a compact subset of X × Y :
We just have to show that f−1(C) is closed where C is a closed subset of Y .
Now f−1(C) = π−11 (π−12 (C) ∩ Graph) which is closed because the graph is
compact and hence closed, and πi are continuous.

5. (Rudin chapter 4 problem 12) A uniformly continuous function of a uniformly con-
tinuous function is uniformly continuous. State this more precisely and prove it.

Answer : f : S ⊂ R → R and g : f(S) ⊂ E ⊂ R → R are uniformly continuous,
then g ◦ f : S → R is uniformly continuous. Indeed, given an ε > 0, there is a δ1ε
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(depending only on ε) such that |a − b| < δ1ε implies that |g(a) − g(b)| < ε. Now
given δ1ε there exists a δε (depending only on δ1ε which depends only on ε) such
that |f(x) − f(y)| < δ1ε whenever |x − y| < δε. Thus |x − y| < δε implies that
|g(f(x))− g(f(y))| < ε.

6. (Rudin chapter 4 problem 15) Call a mapping of X to Y open if f(V ) is an open
subset of Y whenever V is an open subset of X.
Prove that every open continuous map from R to itself is monotonic.

Answer : Suppose f is not monotonic. That means that without loss of generality
we may assume that there exist a < c < b such that f(a) ≤ f(b) and f(b) < f(c).
Since f : [a, b] → R is continuous, by the extreme value theorem, this means that
f attains a maximum at a point x0 ∈ [a, b]. Clearly x0 ∈ (a, b) because of the
existence of c. Now (x0 − ε, x0 + ε) ⊂ (a, b) for small enough ε. Since f is open,
f(x0− ε, x0 + ε) ought to be an open subset of R containing f(x0). But this means
that small values larger than f(x0) should also be in the image of f which is a
contradiction.

7. (Rudin chapter 5 problem 11, See the hint in Rudin) Suppose f is defined in a neigh-

bourhood of x and suppose f
′′
(x) exists. Show that limh→0

f(x+h)+f(x−h)−2f(x)
h2

=

f
′′
(x) and show by a counterexample that the limit may exist even if f

′′
(x) does

not.

Answer : By assumption f
′

exists in a neighbourhood of x. By the L’Hospital rule

limh→0+
f(x+h)+f(x−h)−2f(x)

h2
= limh→0+

f
′
(x+h)−f ′ (x−h)

2h
provided the right hand side

exists. Indeed, by definition of the derivative

f
′′
(x) = lim

h→0

f
′
(x+ h)− f ′

(x)

h
= lim

h→0

f
′
(x)− f ′

(x− h)

h
(2)

which means that the desired limit is indeed f
′′
. A similar argument holds for

h→ 0−.

As for the counterexample, let g(x) = −x2

2
when x ≤ 0 and x2/2 when x ≥ 0. Thus

g
′
(x) = |x|. Hence g

′′
does not exist at 0 but limh→0

g(h)+g(−h)
h2

= 0 and hence exists.

8. (Rudin chapter 5 problem 15, See the hint in Rudin) Suppose f is a twice-differentiable
function on R, and M0,M1,M2 are the suprema of |f |, |f ′|, |f ′′

respectively on
(a,∞). Prove that M2

1 ≤ 4M0M2. (Note the small correction : The strategy
outlined in Rudin can only help with this problem. If you have an arbitrary a as
in Rudin, it may not work.)

Answer : Since f is twice-differentiable, Taylor’s theorem shows that there is some
θ ∈ (x, x + 2h) such that f(x + 2h) = f(x) + f

′
(x)2h + f

′′
(θ)2h2. Thus f

′
(x) =

1
2h

(f(x + 2h)− f(x))− nf ′′
(θ). This means that |f ′

(x)| ≤ hM2 + M0

h
. Choosing h

appropriately (to saturate the the AM-GM inequality), hM2 + M0/h = 2
√
M2M0.

Thus M2
1 ≤ 4M0M2.
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9. (Rudin chapter 6 problem 4) If f(x) = 0 for all irrational x, f(x) = 1 for all rational
x, prove that f is not Riemann integrable on [a, b] for any a < b.

Answer : Indeed, if P is any partition, then U(P, f)−L(P, f) =
∑

(Mi−mi)∆xi =∑
∆xi = b− a (because the rationals and irrationals are dense) and hence cannot

be made less an ε for small ε.

10. (Rudin chapter 6 problem 7) Suppose f : [0, 1]→ R is Riemann integrable on [c, 1]

for every c > 0. Define

∫ 1

0

fdx = lim
c→0+

∫ 1

c

fdx if the limit exists and is finite.

(a) If f is Riemann integrable on [0, 1] show that this definition of the integral
agrees with the old one.

(b) Construct a function such that the above limit exists, although it fails to exist
with |f | in the place of f .

Answer :

(a) Indeed, if f is Riemann integrable, then |
∫ 1

c
fdx−

∫ 1

0
fdx| = |

∫ c
0
fdx| ≤Mc→

0.

(b) Take f(x) = (−1)nn on [ 1
(n+1)

, 1
n
]. Thus lim

c→0+

∫ 1

c

fdx =
−1

2
+

1

3
. . . which we

know converges by the alternating series test. But

∫
|f |dx is the Harmonic

series which diverges.

11. (Rudin chapter 7 problem 6) Prove that fn(x) =
n∑
k=1

(−1)k
x2 + k

k2
converges uni-

formly in every bounded interval but does not converge absolutely for any value of x.

Answer : Suppose x ∈ [a, b]. Then |fn(x) − fm(x)| = |
n∑

k=m+1

(−1)k
x2 + k

k2
| ≤

b2
n∑

m+1

1

k2
+ |

∑ (−1)k

k
| < ε when n,m > N because

∑
b2 1
k2

and
∑ (−1)k

k
converge

and hence are Cauchy. Thus fn converges uniformly. If fn converged absolutely,
then so would have

∑
x2+k
k2
−

∑
x2

k2
=

∑
1
k

which is a contradiction.

12. (Rudin chapter 7 problem 13 part a)) Assume that fn is a sequence of monotoni-
cally increasing functions from R → [0, 1]. Prove that there is a function f and a
sequence nk such that f(x) = limk→∞ fnk

(x) for every x ∈ R.

Answer : Consider the countable set of all rationals. By a theorem in the class,
fn has a subsequence fnk

converging pointwise to a function f on all rationals.
Define f(x) = supq≤x f(q). My claim is that f is increasing, i.e., f(x) ≤ f(y)
when x ≤ y. Note that fnk

(x) ≤ fnk
(y) for all k. Taking limits, this shows that

the statement is trivial for rational x and y. Now suppose q1 ≤ x ≤ q2 ≤ y
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are such that f(q1) ≤ f(x) < f(q1) + ε and f(q2) ≤ f(y) < f(q2) + ε. Thus
f(x) < f(q1) + ε ≤ f(q2) + ε ≤ f(y) + ε. Since this is true for all ε > 0, indeed
f(x) ≤ f(y). Thus f has at most countable many discontinuities.

Suppose x is a point where f is continuous. Then we claim that indeed f(x) =
limm→∞ fnm(x). Indeed, f(q) ≤ f(x) ≤ f(q) + ε when q ≤ x ≤ q + δ. Thus
fnm(q) − ε ≤ f(x) ≤ fnm(q) + 2ε ≤ fnm(x) + 2ε when m > Mq. This means
that f(x) ≤ lim infm fnm(x) + 2ε for every ε. Thus f(x) ≤ lim infm fnm(x). Now
f(x) ≥ f(q + 1

n
)− ε if n is large keeping q + 1

n
≥ x. Thus f(x) ≥ fnm(q + 1

n
)− ε ≥

fnm(x) − ε when m and n are large. Taking lim sup on both sides, we see that
f(x) ≥ lim sup fnm(x)− ε for all ε. Hence f(x) = lim fnm(x).

Now on the set E consisting of countable many discontinuities of f , there is a
further subsequence of fnk

which we call gm converging to a function g pointwise
(where g = f on rationals and places where f is continuous).
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