
Notes for 8 Feb (Wednesday)

1 Recap

1. Did examples of lim sup and lim inf. (Use the “mechanical” formula if you don’t
want to think too much.)

2. Proved Cauchy’s theorem about the convergence of a monotonically decreasing non-
negative series. Did the p-series.

3. Defined the number e, proved the usual formula for it, and proved that it is irra-
tional.

4. Did the Ratio and Root tests. Concluded that the Root test is more powerful (at
least in principle).

2 Power series

A power series is a series of the type
∞∑
k=0

ckz
k where ck and z are complex numbers. Note

that the notion of series, sequences, etc. go through for complex numbers as well. Also,
the complex numbers are complete. (After all they are just R2 jazzed up with multipli-

cation.) So it is easy to prove that if
∞∑
k=0

|ak| converges then so does
∑∞

k=0 ak. Thus we

can use our machinery of ratio and root tests for power series.

Indeed, let L = lim sup |cn|1/n|z|. By the root test, if L < 1 the power series converges,
i.e., if |z| < 1

lim sup |cn|1/n
. In other words, there is a number R = 1

lim sup |cn|1/n
called the

radius of convergence such that if |z| < R the series converges, and outside the disc it
diverges. On the circle |z| = R we have no idea.

1. The series
∑

zn

n!
converges for all z by the ratio test.

2.
∑

zn

n2 has radius of convergence 1. Actually the series converges on the circle of
convergence too because

∑
1
n2 does.

3.
∑

zn

n
converges on the open unit disc and diverges outside. It diverges when z = 1

but on all other points of the unit circle it converges. This will be proved later on.
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3 Absolute convergence, Summation-by-parts

As discussed before, a series
∑

an is said to converge absolutely if
∑
|an| converges.

As proven earlier, absolute convergence implies convergence in the usual sense. The
converse is NOT true. The classic example of such a “conditionally” convergent series is
1− 1

2
+ 1

3
− 1

4
. . .. If you replace everything with its absolute value you get the Harmonic

series. However, as given, the series converges (to ln(2) actually). We will see later on that
if a series is not absolutely convergent, then weird weird things can happen. (Riemann’s
rearrangement theorem.)

We need a technique to handle non absolutely convergent series. Viewing an as |an|
multiplied with ±1, we need a way to estimate

∑
anbn in terms of the individual series.

One such technique is called “summation by parts” (akin to integration-by-parts). Indeed,

Theorem 1. Given {an}, {bn} put An =
n∑

k=0

ak if n ≥ 0. Also put A−1 = 0. Then, if

0 ≤ p ≤ q, we have

q∑
n=p

anbn = Aqbq − Ap−1bp −
q−1∑
n=p

An(bn+1 − bn). (1)

Proof. The proof is straightforward.

q∑
n=p

anbn =

q∑
n=p

(An − An−1)bn =

q∑
n=p

Anbn −
q−1∑

ñ=p−1

Añbñ+1 (2)

which is equal to the right-hand side of the theorem.

We now apply this to get the following result.

Theorem 2. Suppose ai are complex numbers and bi real, and

1. The partial sums An of
∑
ak form a bounded sequence.

2. b0 ≥ b1 ≥ b2 . . ..

3. lim
n→∞

bn = 0.

Then
∑

anbn converges.

Proof. Indeed, we just have to show that the partial sums form a Cauchy sequence.
Indeed, by summation-by-parts,

|
q∑

n=p

anbn| ≤ |Aq|bq + |Ap−1|bp +

q−1∑
n=p

|An|(bn+1 − bn)

≤ C(bq + bp + bq − bp) = bp + bq < ε, (3)

when p, q > N for some N .
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As a corollary, we have the so-called alternating series test.

Theorem 3. If

1. |c1| ≥ |c2| ≥ . . .,

2. lim
n→∞

cn = 0, and

3. cn = (−1)n|cn|,

then
∑
cn converges.

Another corollary is the following theorem about convergence of power series.

Theorem 4. Suppose the radius of convergence of
∑
cnz

n is 1, c0 ≥ c1 . . ., lim cn = 0.
Then

∑
cnz

n converges at every point on the unit circle except perhaps at z = 1.

Proof. Apply theorem 2 with an = zn and bn = cn to conclude the result.

4 Multiplication, and addition of series

So how does one add and multiply series ?
Addition is trivial. You just add the individual terms. It is also easy to prove that∑

(an + bn) =
∑
an +

∑
bn if

∑
an and

∑
bn converge. Likewise,

∑
αan = α

∑
an.

The real challenge comes with multiplication. There are many ways to define mul-
tiplication of series. The most natural is the so-called Cauchy product. Indeed, if you

take two polynomials p(z) =

p∑
n=0

anz
n and q(z) =

q∑
m=0

bmz
m, what is p(z)q(z) =? Indeed

p(z)q(z) =
∑p+q

n=0 czz
n where cn =

n∑
m=0

ambn−m. Therefore we define∑
an

∑
bn to be

∑
n=0

cn where cn =
∑n

k=0 akbn−k.

It is not clear that just because A =
∑
an and B =

∑
bn converge that their Cauchy

product C =
∑
an

∑
bn =

∑
cn converges. Indeed, here is a counterexample -

Let A =
∑
an =

∞∑
n=0

(−1)n√
n+ 1

. This converges conditionally. (Of course it diverges ab-

solutely by the comparison and the p-tests.) Indeed, apply the alternating series test.

Shockingly enough, C = A2 diverges. Indeed, cn =
n∑

k=0

akan−k =
n∑

k=0

(−1)n√
k + 1

√
n− k + 1

.

We claim that lim
n→∞

|cn| 6= 0 thus proving that the series
∑
cn does not converge (the

divergence test if you will). Indeed, lim
n→∞

|cn| ≥ 2 lim
n→∞

n∑
k=0

1

n+ 2
= 2 lim

n→∞

n+ 1

n+ 2
= 2.

Note that in the above counterexample, somehow conditional convergence seems to
screw things up. So if require that one of the series is absolutely convergent, we should
be in good shape. Indeed, we have the following theorem due to Mertens.
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Theorem 5. Suppose A =
∑
an is absolutely convergent and B =

∑
bn is convergent

(perhaps just conditionally), then C = AB =
∑

(
∑n

k=0 akbn−k) is convergent and C =
AB.

We will do the proof the next time (thanks to my bungling up by not looking at
Rudin).

Another question one can ask is - If C, A, and B converge then does C converge to
AB ? Thanks to Abel, this is true. We shall prove this later on.

5 Rearrangements

In this section we prove a shocking and clever theorem due to Riemann. Firstly, note
this strange phenomenon : The series 1 − 1

2
+ 1

3
− 1

4
. . . converges whereas to a number

< 1− 1
2

+ 1
3

= 5
6

(why? because each term you add after that is either negative (pushes
the sum down) or is positive but small (so the pushed down sum does not rise beyond its
original value)). However, consider the “rearranged series” 1 + 1

3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ . . ..

Since 1
4k−3 + 1

4k−1 −
1
2k
> 0, we see that the new partial sums satisfy s

′
3 < s

′
6 < s

′
9 . . . and

hence lim sup s
′
n > s

′
3 = 5

6
. In other words, if you rearrange the terms, you will no longer

converge to the same sum (if you do converge at all).

Definition of rearrangement : Suppose f : Z+ → Z+ is a bijection, then a
′
n = af(n).

Then the series
∑

a
′

n is called a rearrangement of
∑
an.
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