
Notes for 8 Mar (Wednesday)

1 Recap

1. Proved that derivatives satisfy the intermediate value property, i.e., derivatives have
only discontinuities of the second kind.

2. Proved a general version of L’Hospital’s rule and warned against its usage when the
limit of the ratios of the derivatives does not exist.

3. Proved Taylor’s theorem.

2 Vector-valued functions

The notions of derivatives can be defined for ~f : (a, b)Rn in exactly the same manner as
before. A vector-valued function is differentiable if and only if its components are. The
usual rules go through except for the quotient and the product rules. The product also
goes through if we consider the dot product of vectors. However, L’ Hospital’s rule and
the MVT fail spectacularly for complex-valued functions. Indeed,

1. Define f(x)− eix = cos(x) + i sin(x). Thus f
′
(x) = ieix. (We haven’t defined these

yet, but let’s pretend that we have and move on for the purposes of this example.)
Note that f(2π) = f(0) = 1. But |f ′(x)| = 1.

2. On (0, 1) define f(x) = x and g(x) = x + x2ei/x
2
. Note that limx→0

f(x)
g(x)

= 1.

However, L’ Hospital would say that it is limit of 1

1+(2x− 2i
x

)ei/x
2
)
. Note that the

denominator g
′
(x) satisfies |g′(x)| ≤ |2x − 2i

x
| − 1 =

√
4x2 + 4

x2
− 1 ≥ 2

x
− 1.

Therefore, the limit of the fraction goes to 0.

But something similar to MVT is true.

Theorem 1. Suppose ~f : [a, b]→ Rn is continuous and ~f is differentiable on (a, b). Then

there is a c ∈ (a, b) such that | ~f(b)− ~f(a)| ≤ (b− a)|~f ′(c)|.

Proof. Let φ(t) = ( ~f(b)− ~f(a)). ~f(t). By the MVT φ(b)− φ(a) = φ
′
(c)(b− a) for some c.

Thus | ~f(b) − ~f(a)|2 = ( ~f(b) − ~f(a)). ~f
′
(c)(b − a). The Cauchy-Schwartz inequality gives

us the result.

1



3 The Riemann-Stieltjes integral

A review of the Riemann integral : So the symbol

∫ b

a

f(x)dx was defined in order to

calculate the area under the graph of y = f(x). So naively speaking, one divides [a, b]
into a large number of pieces a, a + b−a

n
, . . . , b, then chooses points xi in each of those

pieces, constructs rectangles with base the ith piece and height f(xi), sums the areas∑
i f(xi)δxi and hopes that as the number of pieces became large, the approximation

gets better. Indeed, let’s make this a little more rigorous :

Definition : A partition P of an interval [a, b] is a finite set of points a = x0 ≤ x1 ≤
x2 . . . ≤ xn = b. We write δxi = xi − xi−1.

Suppose f : [a, b] → R is a bounded function. Then Mi = sup[xi−1,xi]
f(x) and

mi = inf [xi−1,xi] f(x) exist. Denote the upper Riemann-Darboux sum U(P, f) =
n∑
i=1

Miδxi

and the lower Riemann-Darboux sum L(P, f) =
n∑
i=1

miδxi.

Note that U(P, f) is bounded below and L(P, f) is bounded above. Thus the upper

and lower Riemann integrals

∫ b̄

a

fdx = inf
P
U(P, f) and

∫ b

ā

fdx = sup
P
L(P, f) exist. If

these two are equal, then we say that f is Riemann integrable on [a, b] with Riemann

integral
∫ b
a
fdx equal to the common value of the upper and lower integrals.

We could proceed from this point, ask when functions are Riemann integrable, how
one calculates Riemann integrals, and so on. However, with just a little bit of effort, one
can handle a more general situation. So we might as well do that. The more general

integral is called the Riemann-Stieltjes integral. It is written as

∫ b

a

f(x)dα(x) where f

is a bounded function on [a, b] and α(x) is a monotonically increasing function on [a, b].
For instance, if α(x) = x then we get back our good ol’ Riemann integral.

Before proceeding to define the Riemann-Stieltjes integral rigorously, you can see that
if α has continuous first derivatives, it is reasonable to expect

∫
fdα =

∫
fα
′
dx therefore

reducing a Riemann-Stieltjes integral to an ordinary Riemann integral. Therefore the
utility of the RS integral should be apparent in cases where α is not well-behaved. Why
should we care about such cases ? Why bother with the RS integral in the first place ?

The point is that if you ever deal with probability theory, there are two kinds of
situations : Tossing coins (discrete random variables) and throwing darts (continuous
random variables). In the former case, you sum over all possibilities whereas in the latter
case you integrate over all possibilities. The Riemann-Stieltjes integral is an attempt
to unify these two situations. Indeed, naively speaking, if α is a step function, then its
derivative is a sum of Dirac-delta “functions”. Thus the integral reduces to a discrete
sum. Ultimately, the Lebesgue integral is the most general theory of integration. The
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RS integral is a precursor to the Lebesgue integral.

Definition : We write ∆α = α(xi) − α(xi−1). Define the upper and lower sums as

U(P, f, α) =
n∑
i=1

Mi∆αi and L(P, f, α) =
n∑
i=1

mi∆αi. As before we define the upper and

lower RS integrals. We say that f is RS integrable w.r.t α if the upper and lower RS
integrals are equal.

This definition is too hard to check. In the quest of a simpler criterion, we need to
make another small, natural definition : A partition P ∗ is said to be a refinement of a
partition P if P ⊂ P ∗. Given two partitions P1, P2, P ∗ is said to be a common refinement
if P ∗ = P1 ∪ P2. Let’s investigate what happens to the upper and lower sums when we
go to a refinement.

Lemma 3.1. If P ∗ is a refinement of P , then L(P, f, α) ≤ L(P ∗, f, α) and U(P ∗, f, α) ≤
U(P, f, α).

Proof. Suppose P ∗ has exactly one more point x which is not in P and satisfies xi−1 <
x < xi. The general case can be done using induction.

Note that U(P ∗, f, α) =
i−1∑
k=1

M̃k∆αk + M̃i(α(x) − α(xi−1)) + M̃i+1(α(xi) − α(x)) +

n∑
i+1

M̃k∆αk. The M̃s are all equal for P and P ∗ except for i, i+1. Indeed, U(P ∗)−U(P ) =

M̃i(α(x) − α(xi−1)) + M̃i+1(α(xi) − α(x)) −Mi(α(xi) − α(xi−1)) ≤ 0. Likewise for the
lower sum.

This may be used to prove that indeed the lower Riemann integral is less than or
equal to the upper one :
Proof : Suppose P1, P2 are two partitions. Let P ∗ be their common refinement. Then
L(P1) ≤ L(P ∗) ≤ U(P ∗) ≤ U(P2). Thus supP1

L(P1) ≤ U(P2). Now take infimum to
conclude the result.

Finally, we have a nice criterion for RS integrability.

Theorem 2. f is RS integrable w.r.t α if and only if for every ε > 0 there exists a
partition P such that U(P, f, α)− L(P, f, α) < ε.

Proof. Suppose f is RS integrable w.r.t. α with integral L. Then by definition for
every ε > 0, there exist partitions P1 and P2 such that L + ε/2 > U(P1) ≥ L and
L− ε/2 < L(P2) ≤ L. Suppose P ∗ is a common refinement, then L + ε/2 > U(P ∗) ≥ L
and L− ε/2 < L(P ∗) ≤ L. Therefore U(P ∗)− L(P ∗) < ε.
Conversely, suppose for every ε such a partition exists. Let L = supL(P ) and U =
inf U(P ). Choose a partition P such that L− ε/2 < L(P ) ≤ L and U + ε/2 > U(P ) ≥ U .
Now choose a partition P̃ such that U(P̃ ) − L(P̃ ) < ε/2. Taking a common refinement
P ∗ we see that L− ε/2 < L(P ∗) ≤ L, U + ε/2 > U(P ∗) ≥ U , and U(P ∗)− L(P ∗) < ε/2.
But this is a contradiction if U 6= L.

3



Before we go ahead and prove that continuous functions are RS integrable, we prove
another related lemma.

Lemma 3.2. 1. If for an ε > 0, there is a partition so that U(P ) − L(P ) < ε, then
this is true for every refinement of the partition. (Already proved this.)

2. If the above holds for P , and if si, ti are arbitrary points in [xi−1, xi] then
∑n

i=1 |f(si)−
f(ti)|∆αi < ε.

3. If f is RS integrable and the above holds, then |
∑
f(ti)∆αi −

∫ b
a
fdα| < ε.

Proof. 1. Already done.

2. Of course f(si), f(ti) ∈ [mi,Mi]. Thus
∑
|f(si)−f(ti)|∆αi <

∑
(Mi−mi)∆αi < ε.

3. Since L(P ) <
∑
f(ti)∆αi < U(P ), and L(P ) ≤

∫
fdα ≤ U(P ) we see the result.

Now we prove that continuous functions are RS integrable :
Proof : The idea is to choose a sufficiently fine partition such that f does not vary much.
Therefore U(P )−L(P ) will be small. Continuity means that f does not vary much near
a point. But in principle, how “near” you have to be to a point p, might potentially
depend on p. This is where the concept of uniform continuity comes to our rescue.
Since continuous functions on [a, b] are uniformly continuous, given an ε > 0 there exists
an n such that for all p, q satisfying |p − q| < b−a

n
we have |f(q) − f(p)| < ε

α(b)−α(a)
.

Now choose the partition x0 = a, x1 = a + b−a
n
, x2 = x1 + b−a

n
, . . . , xn = b. By the ex-

treme value theorem there exist ui, vi ∈ [xi−1, xi] such that f(vi) = Mi and f(ui) = mi.
By uniform continuity Mi − mi <

ε
α(b)−α(a)

. Thus U(P ) − L(P ) =
∑

(Mi − mi)∆αi <
ε

α(b)−α(a)

∑
∆αi = ε.
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