
Notes for 9 Feb (Thursday)

1 Revision of earlier concepts (A very very long re-

cap essentially)

1.1 Set theory, Natural numbers, and Cardinalty

From a practical perspective, all we did was “The set theory you know from high school
is fine except that you need to be careful. Not everything is a set. Sets can only be
constructed from pre-existing ones. Everything that you or I can think of usually turns
out to be a set.”
So the moral of the story is not to worry too much about set theory except to respect its
place in mathematics.
We constructed the set of natural numbers and stated Peano’s axioms. From a practical
perspective, all this means is that you can use induction to prove things. Also, recursive
definitions are all right. Don’t worry too much about natural numbers.
The really new thing in this section is cardinality. Two set A and B are said to have the
same cardinality (written as #A = #B) if there exists a bijection (1-1 onto) function
from A to B. A set is said to be finite if #A = #{1, 2, . . . , n}. In other words it has
n elements. The set of natural numbers is infinite. Any set that has the cardinality of
natural numbers is said to be countable.
We proved (or at least) stated some useful theorems about cardinality :

1. If there is a 1 − 1 map from A to B and another 1 − 1 map from B to A then
#A = #B.

2. If there is an onto map from A to B and another onto map from B to A, then
#A = #B.

3. Every infinite subset of a countable set is countable. (That is, “countable” is the
smallest infinity there is.)

4. If A and B are countable, then so is A × B (and inductively, if A1, A2, . . . , An are
countable, then so is A1 × A2 × A3 × . . . An.

5. Countable unions of countable sets are countable. That is, if Ai are countable sets
then ∪∞i=1Ai is countable.

6. P(X) is strictly larger than X.
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1.2 Integers, Rational numbers, Real numbers

From a practical perspective, integers Z are formally simply numbers of the type a − b
where a and b are natural numbers. (In other words, you are artificially constructing
negative numbers.) Integers are countable.
Rational numbers are formally speaking, simply “ratios” p/q (q 6= 0) of integers. (In
words, you are artificially constructing fractions.) Rationals (like integers and naturals)
have a notion or order ≤ which obeys all the usual properties that it should obey. You
can also add, subtract, multiply, and divide rationals (and all of them respect the order-
ing). Such an object where you can add, subtract, multiply, and divide stuff, and have an
ordering that is respected by all these operations is called an ordered field. The problem
with rationals is that there is no rational x such that x2 = 2. The core reason behind
this problem is that given any rational x such that x2 < 2, I can find another rational
y > x such that y2 < 2. In other words, there is a set bounded from above but it does
not have a “least upper bound”.
Recall that the “least upper bound” or “sup” of a set E is a number y such that
y is an upper bound of E.
Any number z < y fails to be an upper bound of E. That is, there exists an x ∈ E such
that x ≥ z.
We (with great difficulty) constructed a set called Real numbers R such that it contains
the rational numbers, it is an ordered field, and has the least upper bound property. The
construction itself was complicated (equivalence classes of Cauchy sequences of rationals).
But the good thing is that you do not need to ever care about the construction. All you
need to know about the real numbers is that they form an ordered field having the least
upper bound property, i.e. every set that is bounded above has a least upper bound.
Also, between any two reals there exists a rational (Density of rationals) and given any
two reals 0 < x < y there is an integer n such that nx > y (The Archimedian property).

The notion of least upper bound or sup is a nice substitute for “maximum”. In other
words, if you take the interval (0, 1), it has no largest element. So max(0, 1) does not
make sense. However, sup(0, 1) = 1.

Lastly, real numbers are not countable. In fact, #P(N) = #R. This is proven using
Cantor’s diagonalisation.

Let’s do the problems of HW -1 :

1. Prove that algebraic numbers are countable :
Obviously there are infinitely many algebraic numbers. (All integers are algebraic.)
If we prove that algebraic numbers form an infinite subset of a countable set we
will be done. (Infinite subsets of countable sets are countable.)

Given an n, consider the set En of all complex numbers z satisfying a degree n
polynomial with integral coefficients. There are at most n (distinct) roots of any
polynomial. Now the set of coefficients (a0, a1, . . . , an) is countable because it is
Z × Z × . . . n + 1 times. The set En is the union over all (a0, a1, a2, . . . , an) of n
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roots. Since countable unions of countable sets is countable, En is countable.

Taking a union over all n, we get all algebraic numbers. Once again, a countable
union of countable sets is countable.

Fix a real number b > 1.

(a) If m is an integer, then define bm. If m > 0, define b1/m.
Ans. b0 = 1. Assuming bm is defined, bm+1 = bm × b.
Since we proved in the class that positive mth roots of positive reals exist and
are unique, we define b1/m as the unique positive real x such that xm = b.

(b) Prove that (bm)1/n = (bp)1/q if r = m/n = p/q ≥ 0 and m,n, p, q are integers
such that n, q 6= 0. Thus we can define br = (bm)1/n.
Ans. The only way to prove the first statement is by definition. If x = (bm)1/n

and y = (bp)1/q then xn = bm and yq = bp. This means that (xn)p = (bm)p.
Using induction on p (You have to complete this induction in your HW/exam)
one can prove that xnp = (xn)p when n, p are integers. Then xnp = xmq = bmp.
Since mth roots are unique, we may take the mth root on both sides to conclude
that xq = bp. Therefore x = y.

(c) Prove that br+s = brbs if r and s are rational.
Ans. Firstly, note that if r < 0 then br is still defined as (bm)1/n where this
time m is assumed to be negative and n > 0. If r = p

q
and s = m

n
then

br+s = b(pn+qm)/(qn). Assume that qn ≥ 0 (By absorbing any negative signs
into the numerator if necessary.) Then br+s = (bpn+qm)1/qn = (bpnbqm)1/qn.
Since we proved in the class that (xy)1/n = x1/ny1/n we see that br+s =
(bpn)1/qn(bqm)1/qn = brbs.

(d) If x is real, define B(x) to be the set of all numbers bt, where t is rational and
t ≤ x. Prove that br = supB(r) if r is rational. Hence it makes sense to define
bx = supB(x) for every real x.
Ans. So if t ≤ x and t, x are rational, then we claim that bt ≤ bx. Indeed,
bx = bx−tbt. Indeed bx−t ≥ 1 because bp/q = (bp)1/q and no integer ≥ 1 has a
power that is < 1. So br ≥ supB(r). But r ∈ B(r). Therefore br = supB(r).

(e) Prove that bx+y = bxby if x and y are real.
Ans. Note that if r ≤ x and s ≤ y then br+s = brbs ≤ bxby by definition. If
t is a rational such that t < x + y then then t − x < y and by the density
property there exists a rational s ≤ y such that t−x < s. Therefore, t−s < x.
By the density property again, there exists t − s < r ≤ x. This means that
bxby ≥ brbs = br+s > bt for every rational t < x + y. I claim that this means
bxby ≥ bx+y. Indeed, if not, then bxby < bx+y. Because bx+y is the supremum
of bt such that t ≤ x + y, there exists an a < x + y such that bxby < ba. This
is a contradiction. Therefore, bx+y ≤ bxby.

Suppose bx+y < bxby. By definition of supremum, (for small ε > 0) there exist
rationals r ≤ x, s ≤ y such that br > bx − ε > 0 and bs > by − ε > 0. Thus
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br+s = brbs > (bx− ε)(by − ε) ≥ bxby − ε(bx + by). Therefore, taking supremum
we see that bx+y ≥ bxby − ε(bx + by). Taking ε to be smaller than bxby−bx+y

bx+by
we

get a contradiction.

1.3 Topology

Basically, our main object of study is a metric space (X, d). You should think of the
example of R with the metric d(x, y) = |x − y| whenever you think of metric spaces.
(Metric spaces in general satisfy weird properties but in this course we will deal largely
with R.) Basically a metric d is a way of measuring distances between points in such a
way that tthe triangle inequality is satisfied.

Without repeating the material, here are the key definitions you should keep in mind.

1. A set E is called bounded if there is a point p ∈ X and a radius R > 0 such that
E ⊂ BR(p), i.e., E is contained in a large finite ball.

2. An open set U is one where around every point p there is an open ball Br(p) ⊂ U .
A union of arbitrary number of open sets is open. An intersection of finite number
of closed sets is closed.

3. If you have a set E, then an open cover {Uα} of E is a collection of open sets Uα
(one for each α) such that E ⊂ ∪αUα. For example, [0, 1] is covered by (−1, 1

2
) and

(0.01, 2).

4. If A ⊂ E ⊂ X (like (0, 1) ⊂ R ⊂ C) then A is relatively open with respect to E iff
A = U ∩ E where U ⊂ X is open. For example, (0, 1] is relatively open in (−1, 1]
because (0, 1] = (−1, 1] ∩ (0, 2). Note that (0, 1] is NOT open as a subset of R.

5. A relatively open subset of an open subset is open. Likewise, relatively closed in
closed is closed.

6. A limit point p of a set E is one such that every neighbourhood Br(p) contains a
point qr ∈ E not equal to p.

7. A closed set F is such that F c is open. Alternatively, F contains all its limit points.

8. The closure Ē of a set E is the smallest closed set containing E. In other words, Ē
is a closed set such that any closed set containing E contains Ē. Also, Ē consists of
E and the limit points of E. For example, what is the closure of (0, 1]? It is [0, 1].

9. A subset E ⊂ X is said to be dense if Ē = X. In other words, every element in X
is either a point of E or a limit point of E. For example, rationals are dense in real
numbers.

10. A set is called perfect if it is closed and all its points are limit points. A perfect set
is uncountable.
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1.4 Compactness

A set K is called compact if every open cover has a finite subcover. Meaning that if I
have an arbitrarily huge number of open sets whose union contains K, then I can choose
a finite subcollection such that their union contains K.

User’s guide to compactness (i.e. what are examples of compact sets, theorems about
them, and how to use compactness to solve problems or to prove theorems).

1. So firstly, compact sets are closed and bounded. So is the set of all algebraic
numbers compact ? Of course not ! All integers are algebraic. So surely it is not
bounded.

2. Secondly, the only compact subsets of Rn are the closed and bounded ones. (Heine-
Borel theorem.) So is [0, 1] compact ? Yes it is closed and bounded.

3. Thirdly, in Rn every infinite subsets of a compact set K has a limit point in K.
(We will recall sequences soon but compactness in Rn is the same as saying that
every sequence has a convergent subsequence.)

4. Fourthly, the way you use compactness as an assumption in a problem is either to
conclude that a sequence has a limit point (a convergent subsequence) or to say
something like “Every point p is contained in a neighbourhood satisfying some good
properties. Since these neighbourhoods cover the set, and the set is compact, you
only need finitely many such neighbourhoods.”

Examples of problems :

1. (HW 2) Give an example of an open cover of (0, 1) that does not have a finite
subcover.
Ans ) Take Un = (0, 1− 1

n
). These sets are open. Of course ∪nUn = (0, 1). Indeedm

given any x ∈ (0, 1) surely there exists an integer n (by the Archimedian property)
such that 1 − x > 1

n
. Therefore x ∈ Un. But there is no finite subcover. Suppose

there is, i.e., suppose (0, 1) ⊂ Un1 ∪ Un2 . . . Unk
. Then let N be the maximum

of all the nis. Take 1 − 1
N+1

∈ (0, 1). This does not belong to any of the Uni
.

Contradiction.
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