
Notes for 9 Mar (Thursday)

1 Recap

1. Defined vector-valued functions and their derivatives. Gave counterexamples to
show that they do not necessarily satisfy the MVT and the L’Hospital rule.

2. But something similar to the MVT is true.

3. Went over the Riemann integral. Motivated and defined the Riemann-Stieltjes
integral. Defined partitions, refinements.

4. The RS integral exists if and only for every ε > 0 there exists a partition P such
that U(P )− L(P ) < ε.

5. Showed that continuous functions are RS integrable (using uniform continuity).

2 RS integrability

Now we prove that if f is monontonic and α is continuous and monotonically increasing,
then f is RS integrable.
Proof : Now since α is uniformly continuous, choose an n as before such that |p−q| < b−a

n

implies that |α(p)−α(q)| < ε
|f(b)−f(a)| . Now Mi−mi = |f(xi)−f(xi−1)| by monotonicity.

Thus U(P )− L(P ) < ε
|f(b)−f(a)|

∑
|f(xi)− f(xi−1)| = ε.

Lastly, we prove the following theorem.

Theorem 1. Suppose f is bounded and has only finitely many points of discontinuity.
Also assume that α is continuous at every discontinuity of f . Then f is RS integrable.

Proof. Let p1, p2, . . . , pk be the points of discontinuity of f . Cover pi with a small intervale
(αi, βi) such that [αi, βi] ⊂ [a, b] and α varies by at most ε on these intervals. On the
rest of [a, b], f is uniformly continuous. So the same arguments as before produce a
partition P containing αi, βi along with other points such that either Mi − mi < ε or
∆αi < ε. Thus U(P )−L(P ) < ε(α(b)−α(βk)+α(βk−1)−α(βk−2)+ . . .)+ε(

∑
Mi−mi) <

ε(α(b)− α(a)) + ε2Mk (where |f | ≤M on [a, b]) which can be made arbitrarily small by
choosing ε small enough.

Theorem 2. Suppose f is RS integrable w.r.t α, m ≤ f ≤ M , and g : [m,M ] → R is
continuous. Then h = g ◦ f is RS integrable.
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Proof. The intuition is that since
∑

(Mi − mi)∆αi is small, either Mi − mi is small or
the ∆αi is small. Either of these things should force a similar sum for h to be small.
Indeed, since g is uniformly continuous, choose a ε > δ > 0 such that |g(y2)− g(y1)| < ε
whenever |y2 − y2| < δ for all y1, y2 ∈ [m,M ]. Now assume that a partition P is chosen
so that U(P, f, α)− L(P, f, α) < δ2. Therefore

∑
(Mi −mi)∆αi < δ2.

Let M∗
i = supx∈[xi−1,xi]

g(f(x)) and likewise for m∗i . Consider the set E of those i such
that Mi −mi < δ. For such i, M∗

i −m∗i < supy∈[mi,Mi]
g(y) − infy∈[mi,Mi] g(y) < ε. For

all i not in E, Mi − mi ≥ δ. So, δ(
∑

i/∈E ∆αi) ≤
∑

i/∈E(Mi − mi)∆αi < δ2. Therefore∑
i/∈E ∆αi < δ. Therefore∑

(M∗
i −m∗i )∆αi < ε

∑
i∈E

∆αi +
∑
i/∈E

(M∗
i −m∗i )∆αi

< ε(α(b)− α(a)) + 2Kδ

< ε(α(b)− α(a) + 2K). (1)

Since ε is arbitrary, we are done.

This raises the question of which functions are Riemann integrable. The answer re-
quires more knowledge than you will gain through this course. (The answer is : Functions
that are continuous almost everywhere, i.e., if you throw a dart then you will almost surely
not hit a discontinuity.)

3 Properties of the RS integral

1. If f , g are RS integrable, then f +g and cf are so as well. Moreover,
∫ b
a
(f +g)dα =∫ b

a
fdα +

∫ b
a
gdα and

∫ b
a
cfdα = c

∫ b
a
fdα.

2. If f ≤ g and both are RS integrable, then
∫ b
a
fdα ≤

∫ b
a
gdα.

3. If f is RS integrable on [a, c] and on [c, b] then f is RS integrable on [a, b] and∫ b
a
fdα =

∫ c
a
fdα +

∫ b
c
fdα.

4. If |f | ≤M , and f is RS integrable then |
∫ b
a
fdα| ≤M(α(b)− α(a)).

5. If f is RS integrable w.r.t to α1, α2 then it is so with respect to α1+α2 and cα1 where
c > 0. Also

∫
fd(α1 + α2) =

∫
fdα1 +

∫
fdα2. Moreover,

∫
fd(cα1) = c

∫
fdα1.

Proof.

1. Choose partitions P1 and P2 such that U(P1, f) − L(P1, f) < ε
2

and U(P2, g) −
L(P2, g) < ε

2
. By moving to a common refinement P = P1 ∪ P2, we may assume

that both of these hold true for P . Now supx∈[xi−1,xi]
(f+g)(x) ≤ supx∈[xi−1,xi]

f(x)+
supx∈[xi−1,xi]

g(x). Likewise for infimum. Thus U(P, f+g)−L(P, f+g) < U(P, f)−
L(P, f) + U(P, g) − L(P, g) < ε. Thus f + g is RS integrable. Also U(P, f + g) <

U(P, f)+U(P, g). Now U(P, f) <
∫ b
a
fdα+ε and likewise for g. Thus U(P, f+g) <∫ b

a
fdα+

∫ b
a
gdα+ 2ε. Taking infimum we see that

∫ b
a
(f + g)dα ≤

∫ b
a
fdα+

∫ b
a
gdα.
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Likewise, applying the same argument to L(P, f + g) we see that
∫

(f + g)dα =∫
fdα +

∫
gdα. The case of cf is even easier.

2. Since f ≤ g, supx∈[xi−1,xi]
f(x) ≤ supx∈[xi−1,xi]

g(x). Thus U(P, f, α) ≤ U(P, g, α).

Choosing P so that
∫ b
a
gdα + ε > U(P, g, α) (this will of course hold for all refine-

ments of P ), we see that U(P, f) <
∫ b
a
gdα+ ε. Taking infimum over all refinements

of P and
∫ b
a
fdα <

∫ b
a
gdα + ε. Since ε is arbitrary, we are done.

3. Choose partitions P1, P2 such that U(P1, f, α, [a, c]) − L(P1, f, α, [a, c]) < ε
2

and
U(P1, f, α, [a, c]) − ε

2
≤

∫ c
a
fdα < U(P1, f, α, [a, c]) and likewise for P2. Take P =

P1∪P2. This is a partition of [a, b]. Now U(P, f, α) = U(P1, f, α) +U(P2, f, α) and
likewise for L. Thus U(P )−L(P ) < ε. Thus f is RS integrable on [a, b]. Moreover,

U(P ) − ε ≤
∫ c
a
fdα +

∫ b
c
fdα < U(P ). Since this is true for all P and ε, we are

done.

4. −M(α(b) − α(a)) ≤ L(P, f) ≤ U(P, f) ≤ M(α(b) − α(a)) for all partitions. Thus
we are done.

5. The case with cα1 is easy. Suppose we choose a common partition P such that
U(P, f, α1)−L(P, f, α1) < ε/2 and likewise for α2, then U(P, f, α1+α2)−L(P, f, α1+
α2) =

∑
(Mi −mi)(∆α1 + ∆α2) < ε. Thus it is RS integrable. Arguments similar

to those above show that
∫
fd(α1 + α2) =

∫
fdα1 +

∫
fdα2.

3


	Recap
	RS integrability
	Properties of the RS integral

