Notes for 9 Mar (Thursday)

1 Recap

- 1. Defined vector-valued functions and their derivatives. Gave counterexamples to show that they do not necessarily satisfy the MVT and the L'Hospital rule.
- 2. But something similar to the MVT is true.
- 3. Went over the Riemann integral. Motivated and defined the Riemann-Stieltjes integral. Defined partitions, refinements.
- 4. The RS integral exists if and only for every $\epsilon > 0$ there exists a partition P such that $U(P) L(P) < \epsilon$.
- 5. Showed that continuous functions are RS integrable (using uniform continuity).

2 RS integrability

Now we prove that if f is monontonic and α is continuous and monotonically increasing, then f is RS integrable.

Proof: Now since α is uniformly continuous, choose an n as before such that $|p-q| < \frac{b-a}{n}$ implies that $|\alpha(p) - \alpha(q)| < \frac{\epsilon}{|f(b) - f(a)|}$. Now $M_i - m_i = |f(x_i) - f(x_{i-1})|$ by monotonicity. Thus $U(P) - L(P) < \frac{\epsilon}{|f(b) - f(a)|} \sum |f(x_i) - f(x_{i-1})| = \epsilon$.

Lastly, we prove the following theorem.

Theorem 1. Suppose f is bounded and has only finitely many points of discontinuity. Also assume that α is continuous at every discontinuity of f. Then f is RS integrable.

Proof. Let p_1, p_2, \ldots, p_k be the points of discontinuity of f. Cover p_i with a small intervale (α_i, β_i) such that $[\alpha_i, \beta_i] \subset [a, b]$ and α varies by at most ϵ on these intervals. On the rest of [a, b], f is uniformly continuous. So the same arguments as before produce a partition P containing α_i, β_i along with other points such that either $M_i - m_i < \epsilon$ or $\Delta \alpha_i < \epsilon$. Thus $U(P) - L(P) < \epsilon(\alpha(b) - \alpha(\beta_k) + \alpha(\beta_{k-1}) - \alpha(\beta_{k-2}) + \ldots) + \epsilon(\sum M_i - m_i) < \epsilon(\alpha(b) - \alpha(a)) + \epsilon 2Mk$ (where $|f| \leq M$ on [a, b]) which can be made arbitrarily small by choosing ϵ small enough.

Theorem 2. Suppose f is RS integrable w.r.t α , $m \leq f \leq M$, and $g : [m, M] \rightarrow \mathbb{R}$ is continuous. Then $h = g \circ f$ is RS integrable.

Proof. The intuition is that since $\sum (M_i - m_i) \Delta \alpha_i$ is small, either $M_i - m_i$ is small or the $\Delta \alpha_i$ is small. Either of these things should force a similar sum for h to be small.

Indeed, since g is uniformly continuous, choose a $\epsilon > \delta > 0$ such that $|g(y_2) - g(y_1)| < \epsilon$ whenever $|y_2 - y_2| < \delta$ for all $y_1, y_2 \in [m, M]$. Now assume that a partition P is chosen so that $U(P, f, \alpha) - L(P, f, \alpha) < \delta^2$. Therefore $\sum (M_i - m_i) \Delta \alpha_i < \delta^2$.

Let $M_i^* = \sup_{x \in [x_{i-1}, x_i]} g(f(x))$ and likewise for m_i^* . Consider the set E of those i such that $M_i - m_i < \delta$. For such i, $M_i^* - m_i^* < \sup_{y \in [m_i, M_i]} g(y) - \inf_{y \in [m_i, M_i]} g(y) < \epsilon$. For all i not in E, $M_i - m_i \ge \delta$. So, $\delta(\sum_{i \notin E} \Delta \alpha_i) \le \sum_{i \notin E} (M_i - m_i) \Delta \alpha_i < \delta^2$. Therefore $\sum_{i \notin E} \Delta \alpha_i < \delta$. Therefore

$$\sum (M_i^* - m_i^*) \Delta \alpha_i < \epsilon \sum_{i \in E} \Delta \alpha_i + \sum_{i \notin E} (M_i^* - m_i^*) \Delta \alpha_i$$
$$< \epsilon(\alpha(b) - \alpha(a)) + 2K\delta$$
$$< \epsilon(\alpha(b) - \alpha(a) + 2K).$$
(1)

Since ϵ is arbitrary, we are done.

This raises the question of which functions are Riemann integrable. The answer requires more knowledge than you will gain through this course. (The answer is : Functions that are continuous almost everywhere, i.e., if you throw a dart then you will almost surely not hit a discontinuity.)

3 Properties of the RS integral

- 1. If f, g are RS integrable, then f + g and cf are so as well. Moreover, $\int_a^b (f+g)d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$ and $\int_a^b cf d\alpha = c \int_a^b f d\alpha$.
- 2. If $f \leq g$ and both are RS integrable, then $\int_a^b f d\alpha \leq \int_a^b g d\alpha$.
- 3. If f is RS integrable on [a, c] and on [c, b] then f is RS integrable on [a, b] and $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$.
- 4. If $|f| \leq M$, and f is RS integrable then $|\int_a^b f d\alpha| \leq M(\alpha(b) \alpha(a))$.
- 5. If f is RS integrable w.r.t to α_1, α_2 then it is so with respect to $\alpha_1 + \alpha_2$ and $c\alpha_1$ where c > 0. Also $\int fd(\alpha_1 + \alpha_2) = \int fd\alpha_1 + \int fd\alpha_2$. Moreover, $\int fd(c\alpha_1) = c \int fd\alpha_1$.

Proof.

1. Choose partitions P_1 and P_2 such that $U(P_1, f) - L(P_1, f) < \frac{\epsilon}{2}$ and $U(P_2, g) - L(P_2, g) < \frac{\epsilon}{2}$. By moving to a common refinement $P = P_1 \cup P_2$, we may assume that both of these hold true for P. Now $\sup_{x \in [x_{i-1}, x_i]} (f+g)(x) \leq \sup_{x \in [x_{i-1}, x_i]} f(x) + \sup_{x \in [x_{i-1}, x_i]} g(x)$. Likewise for infimum. Thus $U(P, f+g) - L(P, f+g) < U(P, f) - L(P, f) + U(P, g) - L(P, g) < \epsilon$. Thus f + g is RS integrable. Also U(P, f + g) < U(P, f) + U(P, g). Now $U(P, f) < \int_a^b f d\alpha + \epsilon$ and likewise for g. Thus $U(P, f+g) < \int_a^b f d\alpha + \int_a^b g d\alpha + 2\epsilon$. Taking infimum we see that $\int_a^b (f+g) d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.

Likewise, applying the same argument to L(P, f + g) we see that $\int (f + g)d\alpha = \int f d\alpha + \int g d\alpha$. The case of cf is even easier.

- 2. Since $f \leq g$, $\sup_{x \in [x_{i-1}, x_i]} f(x) \leq \sup_{x \in [x_{i-1}, x_i]} g(x)$. Thus $U(P, f, \alpha) \leq U(P, g, \alpha)$. Choosing P so that $\int_a^b g d\alpha + \epsilon > U(P, g, \alpha)$ (this will of course hold for all refinements of P), we see that $U(P, f) < \int_a^b g d\alpha + \epsilon$. Taking infimum over all refinements of P and $\int_a^b f d\alpha < \int_a^b g d\alpha + \epsilon$. Since ϵ is arbitrary, we are done.
- 3. Choose partitions P_1, P_2 such that $U(P_1, f, \alpha, [a, c]) L(P_1, f, \alpha, [a, c]) < \frac{\epsilon}{2}$ and $U(P_1, f, \alpha, [a, c]) \frac{\epsilon}{2} \leq \int_a^c f d\alpha < U(P_1, f, \alpha, [a, c])$ and likewise for P_2 . Take $P = P_1 \cup P_2$. This is a partition of [a, b]. Now $U(P, f, \alpha) = U(P_1, f, \alpha) + U(P_2, f, \alpha)$ and likewise for L. Thus $U(P) L(P) < \epsilon$. Thus f is RS integrable on [a, b]. Moreover, $U(P) \epsilon \leq \int_a^c f d\alpha + \int_c^b f d\alpha < U(P)$. Since this is true for all P and ϵ , we are done.
- 4. $-M(\alpha(b) \alpha(a)) \le L(P, f) \le U(P, f) \le M(\alpha(b) \alpha(a))$ for all partitions. Thus we are done.
- 5. The case with $c\alpha_1$ is easy. Suppose we choose a common partition P such that $U(P, f, \alpha_1) L(P, f, \alpha_1) < \epsilon/2$ and likewise for α_2 , then $U(P, f, \alpha_1 + \alpha_2) L(P, f, \alpha_1 + \alpha_2) = \sum (M_i m_i)(\Delta \alpha_1 + \Delta \alpha_2) < \epsilon$. Thus it is RS integrable. Arguments similar to those above show that $\int f d(\alpha_1 + \alpha_2) = \int f d\alpha_1 + \int f d\alpha_2$.