HW 1 (due on Jan 13, Friday, in the class)

1. (Rudin Problem 2, chapter 2) Assume the fundamental theorem of algebra for this problem - "Every polynomial of degree n having complex coefficients has exactly n complex roots."
A complex number z is said to be algebraic if there are integers $a_{0}, a_{1}, \ldots a_{n}$, not all zero, such that $a_{0} z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=0$. Prove that the set of algebraic numbers is countable. (Hint: First prove that for every positive integer N there are only finitely many equations with $n+\left|a_{0}\right|+\left|a_{1}\right|+\ldots+\left|a_{n}\right|=N$.)
2. (Rudin Problem 6, chapter 1) Fix a real number $b>1$.
(a) If m is an integer, then define b^{m}. If $m>0$, define $b^{1 / m}$.
(b) Prove that $\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q}$ if $r=m / n=p / q \geq 0$ and m, n, p, q are integers such that $n, q \neq 0$. Thus we can define $b^{r}=\left(b^{m}\right)^{1 / n}$.
(c) Prove that $b^{r+s}=b^{r} b^{s}$ if r and s are rational.
(d) If x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that $b^{r}=\sup B(r)$ if r is rational. Hence it makes sense to define $b^{x}=\sup B(x)$ for every real x.
(e) Prove that $b^{x+y}=b^{x} b^{y}$ if x and y are real.
