HW 4 (due on 10th March in the class)

1. (Rudin chapter 4 problem 6) If $f: E \subset\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a function, then the graph of f is the set of points $(x, f(x))$ in the metric space $\left(X \times Y, d_{X \times Y}((x, y),(a, b))=\right.$ $\sqrt{\left.d_{X}(x, a)^{2}+d_{Y}(a, b)^{2}\right)}$. Suppose E is a compact subset of X. Prove that f is continuous on E if and only if its graph is a compact subset of $X \times Y$.
2. (Rudin chapter 4 problem 12) A uniformly continuous function of a uniformly continuous function is uniformly continuous. State this more precisely and prove it.
3. (Rudin chapter 4 problem 15) Call a mapping of X to Y open if $f(V)$ is an open subset of Y whenever V is an open subset of X.
Prove that every open continuous map from \mathbb{R} to itself is monotonic.
