HW 5 (due on 24th March in the class)

1. (Rudin chapter 5 problem 11, See the hint in Rudin) Suppose f is defined in a neighbourhood of x and suppose $f^{\prime \prime}(x)$ exists. Show that $\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=$ $f^{\prime \prime}(x)$ and show by a counterexample that the limit may exist even if $f^{\prime \prime}(x)$ does not.
2. (Rudin chapter 5 problem 15 , See the hint in Rudin) Suppose $a \in \mathbb{R}, f$ is a twicedifferentiable function on (a, ∞), and M_{0}, M_{1}, M_{2} are the suprema of $|f|,\left|f^{\prime}\right|, \mid f^{\prime \prime}$ respectively on (a, ∞). Prove that $M_{1}^{2} \leq 4 M_{0} M_{2}$.
3. (Rudin chapter 6 problem 4) If $f(x)=0$ for all irrational $x, f(x)=1$ for all rational x, prove that f is not Riemann integrable on $[a, b]$ for any $a<b$.
