
Lectures on

FOURIER ANALYSIS

BY

S. THANGAVELU

1. Fourier series on the circle group

Let S1 stand for the set of all complex numbers z of absolute value

one. This becomes a group under multiplication which is called the

circle group. Any element z of this group can be written as z = e2πit

for a unique t ∈ [0, 1). In view of this we can identify S1 with [0, 1)

and there is a one to one correspondence between functions on S1

and functions on the real line R that are 1−periodic, i.e. functions f

satisfying f(t+1) = f(t) for all t ∈ R. The most distinguished functions

on S1 are the trigonometric functions ek defined by

ek(t) = (cos 2πkt+ i sin 2πkt) = e2πikt.

Here k ∈ Z the set of all integers. These functions are distinguished

for several reasons.

First of all they are elementary, smooth functions which have been

studied from ancient times. They are eigenfunctions of the one dimen-

sional Laplacian:

d2

dt2
ek(t) = −4π2k2ek(t).

For each k ∈ Z the map

χk : S1 → S1, χk(e
2πit) = ek(t)

is a homomorphism. Moreover, for each t ∈ R the map

ϕt : Z→ S1, ϕt(k) = ek(t)
1
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is also a homomorphism. They form an orthonormal system in the

sense that

(ek, ej) =

∫ 1

0

ek(t) ¯ej(t)dt = δk,j.

Above all, they are the building blocks using which we can construct

all functions on the circle group.

1.1. Fourier series of continuous functions. We let C(S1) to stand

for the Banach space of all continuous functions on S1 equipped with

the norm ‖f‖∞ = sup0≤t≤1|f(t)|. Note that we have identified the func-

tion f on S1 with a 1−periodic function on R. We do this identification

without any further comments. Given f ∈ C(S1) we have the formal

power series
∞∑

k=−∞

f̂(k)ek.

We are interested in knowing if the partial sums Snf defined by

Snf(t) =
n∑

k=−n

f̂(k)ek(t)

converge to the function f as n tends to infinity. The choice of the

symmetric partial sums instead of more general partial sums is dictated

by the fact that both ek and e−k are eigenfunctions of d2

dt2
with the same

eigenvalue.

In du Bois Reymond constructed a continuos function whose Fourier

series diverges at a given point. This can also be proved by appealing

to uniform boundedness principle. However, we have a positive re-

sult which asserts that trigonometric polynomials are dense in C(S1).

By the term trigonometric polynomials we mean functions of the form

pn(t) =
∑n

k=−n an(k)ek(t). Let P(S1) stand for the space of all such

polynomilas. The space C(S1) is also an algebra under pointwise mul-

tiplication of functions and P(S1) is clearly a subalgebra which satisfies

the following conditions: (i) it separates points on S1; (ii) it contains

all the constants; (iii) it is self-adjoint in the sense that it is closed

under conjugation. By appealing to Stone-Weierstrass theorem for the

compact Hausdorff space S1 we get
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Theorem 1.1. Trigonometric polynomials are dense in C(S1).

This theorem does not give any clue for explicitly constructing a se-

quence of trigonometric polynomials that converges to the given func-

tion f. Suppose the sequence pn(t) =
∑n

k=−n an(k)ek(t) converges to

f in C(S1). Then the kth Fourier coefficient of pn, namely an(k) con-

verges to f̂(k). This is the only information we can get on pn. In the

Hungarian mathematician Fejer proved a very elegant result by explic-

itly constructing a sequence σnf of trigonometric polynomials which

converges to f in C(S1). His idea is just to take the arithmetic means

of the partial sums. Thus he defined

σnf =
1

n+ 1

n∑
k=0

Skf.

It is clear that σnf are trigonometric polynomials. He was then able

to show that σnf converges to f in C(S1).

We define the convolution of two functions f and g on S1 by

f ∗ g(t) =

∫ 1

0

f(t− s)g(s)ds =

∫ 1

0

f(s)g(t− s)ds.

The second equality is a consequence of the fact that for a 1−periodic

function h, ∫ 1

0

h(s)ds =

∫ a+1

a

h(s)ds

for any a ∈ R. We observe that

f ∗ ek(t) =

∫ 1

0

f(s)ek(t− s)ds = f̂(k)ek(t)

and therefore the partial sums are given by convolution with certain

kernels Dk. More precisely, Skf = f ∗Dk where

Dk(t) =
k∑

j=−k

ej(t).

These kernels are called the Dirichlet kernels and are explicitly given

by

Dk(t) =
sin(2k + 1)πt

sin πt
.
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This can be proved simply by summing a geometric series.

The Fejer means are also convolutions: σnf = f ∗Kn where

Kn(t) =
1

n+ 1

n∑
k=0

Dk(t) =
1

n+ 1

n∑
k=0

sin(2k + 1)πt

sin πt
.

Since sin(2k + 1)πt is the imaginary part of e(2k+1)πit another simple

calculation reveals that

Kn(t) =
1

n+ 1

sin2(n+ 1)πt

sin2 πt
.

With this explicit formula for the Fejer kernel Kn we are ready state

and prove Fejers’s theorem.

Theorem 1.2. For every f ∈ C(S1), σnf converges to f in C(S1) as

n tends to infinity.

Proof. We first make the observation that
∫ 1

0
Kn(t)dt = 1. This follows

from the fact that
∫ 1

0
Dk(t)dt vanishes unless k = 0 in which case it is

equal to 1. Therefore, we can write

σnf(t)−f(t) =

∫ 1

0

(f(t−s)−f(t))Kn(s)ds =

∫ 1/2

−1/2
(f(t−s)−f(t))Kn(s)ds.

The equality is due to the periodicity of the functions f and Kn. As

f is uniformly continuous, given ε > 0 we can choose δ > 0 such that

|f(t− s)− f(t)| < 1
2
ε for all |s| ≤ δ. Therefore,∫

|s|≤δ
|f(t− s)− f(t)|Kn(s)ds <

1

2
ε.

On the other hand, when |s| > δ,Kn(s) → 0 uniformly as n tends

to infinity. This follows from the fact that | sin 2πs| > | sin 2πδ| for
1
2
≥ |s| > δ. By choosing N large we can make Kn(s) < 1

4
‖f‖−1∞ ε for all

n ≥ n. For such n it is then immediate that∫
δ<|s|≤1/2

|f(t− s)− f(t)|Kn(s)ds <
1

2
ε.

This proves the theorem as N is independent of t. �



FOURIER ANALYSIS 5

1.2. Fourier series of L2 functions. The best behaviour of Fourier

series occurs when we deal with square summable functions, i.e., func-

tions from the Hilbert space L2(S1). The inner product and norm in

L2(S1) are given by

(f, g) =

∫ 1

0

f(t)ḡ(t)dt, ‖f‖22 = (f, f)

for f, g ∈ L2(S1). Since every f ∈ L2(S1) is integrable its Fourier

coefficients are well defined and we have the formal Fourier series. For

the partial sums Snf of f ∈ L2(S1) we have the following result.

Theorem 1.3. For every f ∈ L2(S1) the partial sums Snf converge to

f in L2(S1). Thus the exponentialsek, k ∈ Z form an orthonormal basis

for L2(S1).

Proof. For any trigonometric polynomial p =
∑m

k=−m ckek we see that

‖p‖22 =
∑m

k=−m |ck|2 due to the orthonormality of the functions ek.

Using this a simple calculation shows that

‖f − Snf‖22 = ‖f‖22 −
n∑

k=−n

|f̂(k)|2.

Therefore, we get the Bessel’s inequality

n∑
k=−n

|f̂(k)|2 ≤ ‖f‖22

valid for any f ∈ L2(S1). The above also shows that the series∑∞
k=−∞ |f̂(k)|2 converges which in turn implies∑

m+1≤|k|≤n

|f̂(k)|2 → 0

as m tends to infinity. Since

‖Snf − Smf‖22 =
∑

m+1≤|k|≤n

|f̂(k)|2

for m,n we see that Snf is a Cauchy sequence in L2(S1) and hence

converges to some g ∈ L2(S1). The proof will be complete if we can
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show that g = f. To prove this we first observe that as Snf converges

to g in L2(S1),

ĝ(k) = lim
n→∞

ˆ(Snf)(k) = f̂(k).

Thus, both f and g have the same Fourier coefficients. We just need

to appeal to the following uniqueness theorem to conclude that f = g.

�

Theorem 1.4. For f ∈ L2(S1), if f̂(k) = 0 for all k ∈ Z then f = 0.

Proof. We only need to show that σnf converges to f in L2(S1) as

n tends to infinity. For then under the hypothesis σnf = 0 for all

n which means f = 0 as well. To show that σnf converges to f in

L2(S1) we use the density of C(S1) in L2(S1). Given ε > 0 we choose

g ∈ C(S1) so that ‖f −g‖2 < 1
3
ε. Then choose N so that for all n > N ,

‖σng− g‖∞ < 1
3

which is possible in view of Fejer’s theorem. But then

we also have

‖σng − g‖2 ≤ ‖σng − g‖∞ <
1

3
ε.

Therefore,

‖σnf − f‖2 ≤ ‖σn(f − g)‖2 + ‖σng − g‖2 + ‖g − f‖2 <
2

3
ε.

The theorem will be proved if we can show that ‖σnf‖2 ≤ ‖f‖2 for all

n. But this follows from the Young’s inequality ‖f ∗ h‖2 ≤ ‖h‖1‖f‖2
since σnf = f ∗ σn and ‖σn‖1 = 1. �

Since norm and inner product are continuos functions we obtain

the following corollary, known as Parseval’s theorem, as an immediate

consequence of Theorem.

Corollary 1.5. For f, g ∈ L2(S1) we have

(f, g) =
∞∑

k=−∞

f̂(k)ĝ(k).

From the corollary we infer that the map f → f̂(k) is an iso-

metric isomorphism from L2(S1) onto the Hilbert space of sequences

l2(Z). This is known as the Riesz-Fischer theorem for the Hilbert space

L2(S1).
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1.3. Fourier series of Lp functions. We now turn our attention to

Fourier series of Lp functions. Equipped with the norm (for 1 ≤ p <∞)

‖f‖p =

(∫ 1

0

|f(t)|pdt
) 1

p

,

Lp(S1) is a Banach space. When p = ∞ we let L∞(S1) stand for all

essentially bounded functions with ‖f‖∞ being the essential supremum.

Our main concern is the convergence of the partial sums Snf in the Lp

norm. Instead of the partial sums if we consider the Fejer means we

have the following result.

Theorem 1.6. Let 1 ≤ p < ∞ and f ∈ Lp(S1). Then σnf converges

to f in the norm.

Proof. Since C(S1) is dense in Lp(S1) the theorem will follow if we can

show: (i) σng converges to g in Lp(S1) for all g ∈ C(S1);(ii) ‖σnf‖p ≤
‖f‖p, for all f ∈ Lp(S1) where C is independent of n. (We say that σn

are uniformly bounded on Lp(S1).) To see this, let ε be given. First

choose g ∈ C(S1) such that ‖f − g‖p < 1
4
ε and then take N so that

‖σng − g‖p < 1
2
ε for all n ≥ N. Then it is clear that

‖σnf − f‖p ≤ ‖σn(f − g)‖p + ‖σng − g‖p + ‖f − g‖p < ε

for all n ≥ N.

The assertion (i) follows from Fejer’s theorem since the uniform norm

dominates the Lp norm and (ii) follows from Young’s inequality. This

completes the proof of the theorem. �

The above theorem shows that the set of all trigonometric polynomi-

als is dense in Lp for 1 ≤ p <∞ (which is clearly not true for L∞(S1)).

When f is a trigonometric polynomial it is clear that Snf converges

to f in the norm as n tends to infinity. Therefore, in order to show

that Snf converges to f in the norm for all f ∈ Lp(S1) we only need to

prove that the operators Sn are uniformly bounded on Lp. In fact, by

applealing to uniform boundedness principle we can show that these

two are equivalent. Regarding the uniform boundedness of Sn we begin

with the following negative result.
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Theorem 1.7. The operators Sn are not uniformly bounded on L1(S1).

Consequently there are integrable functions f for which Snf does not

converge in L1(S1).

Proof. We prove the theorem by contradiction. Suppose we have the

uniform estimates ‖Snf‖1 ≤ C‖f‖1 for some constant C > 0. Taking

f = σm, the Fejer kernel we see that ‖Dn ∗ σm‖1 ≤ C for all n and m.

Since Dn ∗ σm converges to Dn in L1(S1) as m tends to infinity we get

‖Dn‖1 ≤ C for all n. But an easy computation, which we leave it to the

reader, shows that ‖Dn‖1 grows like logn. Hence, we get the required

contradiction. �

Let us look at Snf more closely. We can rewrite

Snf(t) = en(−t)
2n∑
k=0

f̂(k − n)ek(t)

and since f̂(k− n) = ˆ(fen)(k) we have the equation enSnf = P2n(fen)

where Pnf =
∑n

k=0 f̂(k−n)ek. Thus the uniform boundedness of Sn will

follow once we prove the uniform boundedness of Pn. These operators

suggest that we look at the projection operator P defined by

Pf =
∞∑
k=0

f̂(k)ek.

We observe that Pf is defined on C(S1) as an L2 function. A priori it

is not clear if we can extend P to Lp(S1) as a bounded linear operator.

Proposition 1.8. The partial sum operators Sn are uniformly bounded

on Lp(S1) if and only if P initially defined on C(S1) extends to Lp(S1)

as a bounded operator.

Proof. If Sn are uniformly bounded then so are Pn and hence we have

‖Pnf‖p ≤ C‖f‖p for all f ∈ Lp(S1) and C independent of n. For any

trigonometric polynomial f of degree m we see that Pnf = Pf for all

n ≥ m and hence ‖Pf‖p ≤ C‖f‖p. Since trigonometric polynomilas

are dense in Lp(S1) we can extend P to the whole of Lp as a bounded



FOURIER ANALYSIS 9

operator. Conversely, suppose P is bounded on Lp(S1). If f is a trigono-

metric polynomial of degree m then ‖Pnf‖p = ‖Pf‖p ≤ C‖f‖p for all

n ≥ m and hence ‖Pnf‖p ≤ C(f) for all n for some C(f). By appealing

to the uniform boundedness principle we get ‖Pn‖p ≤ C‖f‖p and the

same is true of Sn. This proves the proposition. �

Thus we have reduced the problem of proving the uniform bounded-

ness of Sn to that of proving the boundedness of the single operator P.

When f ∈ C(S1) the boundedness of the Fourier coefficients allow us

to extend Pf as a holomorphic function of z = re2πit in the unit disc

D = {z ∈ C : |z| < 1}. Indeed,

Pf(z) =
∞∑
k=0

f̂(k)zk

is holomorphic in D as the series converges uniformly over compact

subsets of D. Note that P is a convolution operator given by

Pf(re2πit) =

∫ 1

0

f(t− s)(1− re2πis)−1ds.

When f is real valued a simple calculation shows that

2Pf(re2πit) = f̂(0) + Prf(t) + iQrf(t)

where

Prf(t) =
∞∑

k=−∞

f̂(k)r|k|ek(t)

and

Qrf(t) = (−i)
∞∑

k=−∞

sign(k)f̂(k)r|k|ek(t).

Here sign(k) = 1 if k > 0,−1 if k < 0 and sign(0) = 0.

The functions Prf and Qrf are called the Poisson and conjugate

Poisson integrals of f respectively. Observe that Pf(re2πit) converges

to Pf(e2πit) as r → 1 whenever f is a trigonometric polynomial. There-

fore, the inequality ‖Pf‖p ≤ C‖f‖p for all trigonometric polynomials

will follow if we can show that Pr and Qr are uniformly bounded on

Lp(S1) for all 0 < r < 1.
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We first prove the uniform boundedness of Prf which is easy. We

can write Prf(t) = f ∗pr(t) where the ’Poisson kernel’ pr(t) is given by

pr(t) =
∞∑

k=−∞

r|k|ek(t) = <
(
(1− re2πis)−1

)
− 1.

A simple calculation shows that

pr(t) =
1− r2

1 + r2 − 2r cos 2πt
.

Note that pr(t) > 0 and ‖pr‖1 = 1. Therefore, the following theorem is

an immediate consequence of Young’s inequality.

Theorem 1.9. For 1 ≤ p <∞, f ∈ Lp(S1) and 0 < r < 1 we have the

uniform estimates ‖Prf‖p ≤ C‖f‖p. Consequently, Prf converges to f

in the norm as r tends to one.

The uniform boundedness of Qrf is not so easy to establish. As

above we can write Qrf(t) = f ∗ qr(t) where the ’conjugate Poisson’

kernel is given by

qr(t) = (−i)
∞∑

k=−∞

(sign k)r|k|ek(t) = =
(
(1− re2πis)−1

)
.

More explicitly,

qr(t) =
2r sin 2πt

1 + r2 − 2r cos 2πt
.

We observe that unlike pr(t), this kernel is oscillating and
∫ 1

0
qr(t)dt =

0. We therefore, cannot use the simple-minded Young’s inequality in

proving the uniform boundedness of the conjugate Poisson integrals.

The idea is to use the fact that Prf(t) + iQrf(t) is a holomorphic

function of z = re2πit. We show that the Lp norms of Qrf can be

estimated in terms of the Lp norms of Prf. By the result of the previous

theorem we get the uniform boundedness of Qrf.

Theorem 1.10. For 1 < p <∞, f ∈ C(S1) and 0 < r < 1 we have the

uniform estimates ‖Qrf‖p ≤ C‖f‖p. Consequently, Qrf converges to

some function f̃ (called the conjugate function) in the norm as r tends

to one.



FOURIER ANALYSIS 11

Proof. Without loss of generality we can assume that f ≥ 0 so that

the real part of the holomorphic function F (z) = Prf(t) + iQrf(t) is

positive and hence G(z) = F (z)p is welldefined and holomorphic in D.

We can just choose the branch which is real at the origin. Let γ be such

that γ < π
2

but pγ > π
2

and define Aγ = {t ∈ [0, 1) : | argF (re2πit)| <
γ} and Bγ to be the complement of Aγ in [0, 1). We first estimate the

integral of |G(z)| taken over Aγ.

Since F (re2πit) = |F (re2πit)|ei argF (re2πit) we have

<F (re2πit) = |F (re2πit)| cos(argF (re2πit)) ≥ |F (re2πit) cos γ

for all t ∈ Aγ. Therefore,∫
Aγ

|F (re2πit)|pdt ≤ (cos γ)−p
∫
Aγ

Prf(t)pdt ≤ Cp

∫ 1

0

|f(t)|pdt

where we have used the uniform boundedness of the Poisson integrals.

On the other hand,

<G(re2πit) = |F (re2πit)|p cos(p argF (re2πit))

and hence for t ∈ Bγ we have

|G(re2πit)| ≤ (cos(pγ))−1<G(re2πit).

Mean value theorem applied to the harmonic function <G(re2πit) gives

us ∫ 1

0

<G(re2πit)dt = f̂(0)

from which we get∫
Bγ

<G(re2πit)dt = f̂(0)−
∫
Aγ

<G(re2πit)dt.

As both terms on the right hand side are uniformly bounded by ‖f‖pp
we get∫

Bγ

|G(re2πit)|dt ≤ | cos(pγ)|−1|
∫
Bγ

<G(re2πit)dt| ≤ Cp

∫ 1

0

|f(t)|pdt.

Thus we have proved∫ 1

0

|F (re2πit)|pdt ≤ Cp

∫ 1

0

|f(t)|pdt.
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As Qrf(t) = =F (re2πit) this proves the uniform boundedness of the

conjugate Poisson integrals.

�

As noted earlier the uniform boundedness of the Poisson and conju-

gate Poisson integrals lead to the boundedness of the projection oper-

ator P on Lp for 1 < p <∞. This together with Proposition gives the

following result.

Theorem 1.11. The partial sum operators Sn are uniformly bounded

on Lp for all 1 < p < ∞. Consequently, for every f ∈ Lp(S1), Snf

converges to f in the norm as n tends to infinity.

We conclude this subsection with some remarks on the conjugate

function f̃ which we mentioned in passing in the statement of Theorem

. For f ∈ L2(S1) the series

(−i)
∞∑

k=−∞

(sign k)f̂(k)ek

converges in L2 to a function which is denoted by f̃ . Since ‖f̃‖2 ≤
‖f‖2 the operator f → f̃ is bounded on L2(S1). For trigonometric

polynomials, Qrf converges to f̃ as r → 1. Therefore, the uniform

boundedness of Qrf leads to the estimate ‖f̃‖p ≤ C‖f‖p for all 1 <

p <∞. Since Qrf = f ∗ qr we expect f̃ to be given by

f̃(t) =

∫ 1

0

f(s) cot(t− s)ds.

In the above representation the kernel cot(t − s) has a nonintegrable

singularity along the diagonal and hence the above is a ’singular integral

operator’ and dealing with them is a delicate problem.

1.4. Fourier series and holomorphic functions. In connection

with the operator P we have considered functions on S1 which have a

holomorphic extension to the discD. Any f ∈ C(S1) for which f̂(k) = 0

for all k < 0 has this property. For such functions f = Pf so that

2f(re2πit) = f̂(0) + Prf(t) + iQrf(t)
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from which we get the uniform estimates∫ 1

0

|f(re2πit)|pdt ≤ Cp
p

for all 1 < p <∞ 0 < r < 1. This leads to the definition of the (holo-

morphic) Hardy spaces Hp(D). In this section we consider functions

on S1 which have holomorphic extensions to C∗, the set of all nonzero

complex numbers.

As we know any function F (z) holomorphic in an annulus r1 < |z| <
r2 has the Laurent expansion

F (z) =
∞∑

k=−∞

akz
k

the series being uniformly convergent on every compact subset of the

annulus. When |z| = r, r1 < r < r2 the above expansion is nothing

but the Fourier series of the function F (re2πit). Whenever the annulus

contains S1 this simply means that ak = f̂(k), where f is the restriction

of F to S1. Writing z = e2πi(t+is) where s ∈ R is such that r1 < e−2πs <

r2 the above series takes the form

F (e1(t+ is)) =
∞∑

k=−∞

f̂(k)e2πik(t+is).

Applying Parseval’s theorem we get the following formula known as

Gutzmer’s formula in the literature.

Lemma 1.12. Let F be holomrphic in an annulus which contains S1

and let f be the restriction of F to S1. Then for any s ∈ R for which

e2πi(t+is) is in the annulus we have∫ 1

0

|F (e1(t+ is))|2dt =
∞∑

k=−∞

|f̂(k)|2e−4πks.

When F is holomorphic on C∗ the above formula is valid for all

s ∈ R. One way to produce such functions is to start with a function

f on S1 and define

F (e1(t+ is)) =
∞∑

k=−∞

f̂(k)e2πik(t+is).
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For the series to converge and define a holomorphic function we cer-

tainly need to assume that the Fourier coefficients f̂(k) have rapid

decay. By fixing a function h with rapdly decreasing Fourier coeffients

and considering f ∗ h in place of f where f runs through, say L2(S1)

we get a whole family of functions with the desired property.

Let us be more specific and consider the function hr, r > 0 defined

by the condition ĥr(k) = e−4π
2rk2 . The function itself is given by the

uniformly convergent series

hr(t) =
∞∑

k=−∞

e−4π
2rk2e2πikt.

It is clear that hr extends to a holomorphic function on C∗. For any

f ∈ L2(S1) the function ur = f ∗ hr also has the same property due

to the fact that ˆf ∗ hr(k) = f̂(k)ĥr(k). From the definition we observe

that ur(t) satisfies the heat equation

∂rur(t) = ∂2t ur, lim
r→0

ur(t) = f(t)

where the limit is taken in the L2 sense. Indeed, we have

Theorem 1.13. For any f ∈ Lp(S1), 1 ≤ p < ∞, f ∗ hr converges to

f in the norm as r → 0.

Proof. We show below that hr(t) > 0, ‖hr‖1 = 1 and hr(t) → 0 uni-

formly for δ < |t| ≤ 1 as r tends to 0. The first two properties give us

the uniform boundedness ‖f ∗ hr‖p ≤ ‖f‖p. The third property shows

that f ∗ hr converges to f uniformly for all f ∈ C(S1). These two will

complete the proof. The required properties of hr follow from the next

result known as Jacobi’s identity. �

Proposition 1.14. For any r > 0 and t ∈ R we have

hr(t) = (4πr)−
1
2

∞∑
k=−∞

e−
1
4r

(t−k)2 .

Proof. The series on the right hand side converges uniformly and de-

fines a smooth periodic function. Therefore, we only need to show that

the Fourier coefficients of that function are precisely e−4π
2rk2 . Changing
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the order of integration and summation we see that the k−th Fourier

coefficient is given by

(4πr)−
1
2

∫ ∞
−∞

e−
1
4r
t2e−2πikt.

This integral is evaluated in the next lemma which proves the propo-

sition. �

Lemma 1.15.

(2π)−
1
2

∫ ∞
−∞

e−
1
2
t2e−itsdt = e−

1
2
s2 .

Proof. The integral clearly defines an entire function of the complex

variable s and hence it is enough to show that

(2π)−
1
2

∫ ∞
−∞

e−
1
2
t2etsdt = e

1
2
s2 .

By changing t into t+ s the integral under consideration becomes

(2π)−
1
2

(∫ ∞
−∞

e−
1
2
t2dt

)
e

1
2
s2 .

This proves the lemma as the last integral is (2π)−
1
2 . �

We have shown that the functions ur(t) = f ∗ hr(t), f ∈ L2(S1)

extend to C∗ as holomorphic functions. They also have another in-

teresting property. Let us define a weight function wr(z) on C∗ by

setting

wr(z) = (2πr)−
1
2 e−

1
2r
s2 , z = e2πi(t+is).

A simple calculation shows that

(2πr)−
1
2

∫ ∞
−∞

e−4πkse−
1
2r
s2ds = e8π

2rk2 .

In view of Gutzmer’s formula and Parsevals’ theorem we obtain∫
C∗
|f ∗ hr(z)|2wr(z)dz =

∫ 1

0

|f(t)|2dt.

Here dz = dtds is the measure on C∗ which is identified with S1 × R.
Thus the holomorphic extension of f ∗ hr belongs to the weighted
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Bergman space Br(C∗) defined to be the space of all holomorphic func-

tions on C∗ that are square integrable with respect to wr(z)dz. We have

the follwoing characterisation of this space.

Theorem 1.16. A holomorphic function F on C∗ belongs to Br(C∗)
if and only if the restriction of F to S1 is of the form f ∗ hr for some

f ∈ L2(S1). Moreover,∫
C∗
|F (z)|2wr(z)dz =

∫ 1

0

|f(t)|2dt.

Proof. We only need to prove the ’only if’ part as the other part has

been proved above. By Gutzmer’s formula we have∫ 1

0

|F (e1(t+ is))|2dt =
∞∑

k=−∞

|ck|2e−4πks

where ck are the Fourier coefficients of the function g(t) = F (e1(t)).

Integrating with respect to (2πr)−
1
2 e−

1
2r
s2ds and using the hypothesis

on F we see that
∞∑

k=−∞

|ck|2e8π
2rk2 <∞.

In order to complete the proof we just define f by

f(t) =
∞∑

k=−∞

cke
4πrk2ek(t)

so that f ∈ L2(S1) and f ∗ hr(t) = ck = ĝ(k) as desired. �

The above theorem shows that the taranform which takes f into

the holomorphic function F (z) = f ∗ hr(e1(t + is)) is an isometric

isomorphism from L2(S1) onto Br(C∗). This transform is called the

Segal-Bargmann transform and also the heat kernel transform which

can be studied in various other settings as well.
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2. Fourier transform on the real line

In this section we show that there exists a remarkable unitary oper-

ator F on the Hilbert space L2(R) which we call the Fourier transform

and study some of the basic properties of that operator.

2.1. Unitary operators: some examples. We begin with some def-

initions. Given two Hilbert spaces H1 and H2 consider a bounded linear

operator T : H1 → H2. We define its adjoint, denoted by T ∗ the unique

operator from H2 into H1 determined by the condition

(Tu, v)2 = (u, T ∗v)1, u ∈ H1, v ∈ H2

where (·, ·)j stand for the inner product in Hj. Note that T ∗ is bounded.

We say that T is unitary if TT ∗ = I2, T
∗T = I1 where Ij is the identity

operator on Hj. If T is unitary then we have (u, v)1 = (Tu, Tv)2 for all

u, v ∈ H1. In particular ‖Tu‖2 = ‖u‖1, u ∈ H1.

We give some examples of unitary operators. Let H1 = L2(S1) and

H2 = l2(Z). Take T to be the operator Tf(k) = f̂(k) where

f̂(k) =

∫ 1

0

f(t)e−2πiktdt.

Then it can be checked that T ∗ is given by

T ∗ϕ(t) =
∞∑
−∞

ϕ(k)e−2πikt.

The Plancherel theorem for the Fourier series shows that T is unitary.

Another simple example is provided by the translation τaf(x) = f(x−
a) defined from L2(R) into itself. We give some more examples below.

Let us take the nonabelian group H1 which is R × R × R with the

group law

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + xy′).

Then it is clear that H1 is nonabelian and the Lebesgue measure dxdydt

is both left and right invariant Haar measure on H1. With this measure

we can form the Hilbert space L2(H1). Let Γ = Z × Z × Z. Then it

is easy to check that Γ is a subgroup of H1 so that we can form the
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quotient M = Γ/H1 consisting of all right cosets of Γ. Functions on

M are naturally identified with left Γ−invariant functions on H1. As

the Lebesgue measure dxdydt is left Γ− invariant we can form L2(M)

using the Lebesgue measure restricted to M. As a set we can identify

M with [0, 1)3 and we just think of L2(M) as L2([0, 1)3).

Fourier expansion in the last variable allows us to decompose L2(M)

into a direct sum of orthogonal subspaces. Simply define Hk to be the

set of all f ∈ L2(M) which satisfy the condition

f(x, y, t+ s) = e2πiksf(x, y, t).

Then Hk is orthogonal to Hj whenever k 6= j and any f ∈ L2(M) has

the unique expansion

f =
∞∑

k=−∞

fk, fk ∈ Hk.

We are mainly interested in H1 which is a Hilbert space in its own

right.(why?) It is interesting to note that functions in H1 are also

invariant under the left action of Γ.

Our next example of a unitary operator is the following. Consider

the map J : H1 → H1 given by J(x, y, t) = (y,−x, t − xy). Then J is

an automorphism of the group H1 which satisfies (i)J4 = I,(ii) J(Γ) =

Γ(i.e. J leaves Γ invariant) and (iii) J restricted to the center of H1 is

just the identity; i.e. J(0, 0, t) = (0, 0, t). Using this automorphism we

define an operator, denoted by the same symbol, on H1 by

Jf(x, y, t) = f(J(x, y, t)) = f(y,−x, t− xy).

It is clear that J∗f(x, y, t) = f(−y, x, t− xy) so that J is unitary. We

also observe that J2f(x, y, t) = f(−x,−y, t).
We now define another very important unitary operator which takes

L2(R) onto H1. This operator used by Weil and Brezin is called the

Weil- Brezin transform and is defined as follows. For f ∈ L2(R),

V f(x, y, t) = e2πit
∞∑

n=−∞

f(x+ n)e2πiny.
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As f ∈ L2(R) we know that f(x + n) is finite for almost every x ∈ R.
The above series converges in L2([0, 1)) as a function of y and we have∫ 1

0

|V f(x, y, t)|2dy =
∞∑

n=−∞

∫ 1

0

|f(x+ n)|2.

Thus it follows that V f ∈ H1 and∫
[0,1)3
|V f(x, y, t)|2dxdydt =

∫ ∞
−∞
|f(x)|2dx.

Proposition 2.1. V is a unitary operator from L2(R) onto H1.

To prove this proposition we need to calculate V ∗. It is clear that V

is one to one but is also onto. To see this, given F ∈ H1 consider f

defined as follows. For x ∈ [m,m+ 1) define

f(x) =

∫ 1

0

F (x−m, y, 0)e−2πimydy.

Then it is clear that f ∈ L2(R) and

V f(x, y, t) = e2πit
∞∑

m=−∞

(∫ 1

0

F (x, u, 0))e−2πimudu

)
e2πimy = F (x, y, t).

Moreover, if f, g ∈ L2(R) then

(f, g) =
∞∑

m=−∞

∫ 1

0

f(x+m)g(x+m)dx.

The sum is nothing but∫ 1

0

V f(x, y, t)V g(x, y, t)dy

and hence we have (f, g) = (V f, V g). This shows that V ∗ = V −1 and

hence V is unitary.

2.2. Fourier transform: Plancherel and inversion theorems.

Definition 2.2. The unitary operator V ∗JV from L2(R) onto itself is

called the Fourier transform and is denoted by F .

We record some important properties of the Fourier transform in the

following theorem.
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Theorem 2.3. The Fourier transform F satisfies: (i) F4f = f, for

every f ∈ L2(R) (ii) F2f(x) = f(−x) for almost every x ∈ R and (iii)

‖Ff‖2 = ‖f‖2.

We only need to check (ii) as (i) follows immediately since J4 = I.

As J2f(x, y, t) = f(−x,−y, t) we have

F2f(x) =

∫ 1

0

V f(−x−m,−y, t)e−2πimydy

whenever x ∈ [m,m+ 1). If we recall the definition of V f the above is

simply f(−x).

The property (iii), namely ‖Ff‖2 = ‖f‖2 is called the Plancherel

theorem for the Fourier transform.

Before proceeding further let us calculate the Fourier transforms of

some well known functions. As our first example let us take the Gauss-

ian ϕ(x) = e−πx
2
.

Proposition 2.4. The Fourier transform of ϕ is itself: Fϕ = ϕ.

Proof. By definition, when x ∈ [0, 1),

Fϕ(x+m) =

∫ 1

0

∞∑
n=−∞

ϕ(y + n)e−2πi(y+n)(x+m)dy

which can be rewritten as

e−π(x+m)2
∫ 1

0

∞∑
n=−∞

e−π(y+n+i(x+m))2dy.

We claim that the integral is a constant. To see this, note that

G(w) =

∫ 1

0

∞∑
n=−∞

e−π(y+n+iw)
2

dy =

∫ ∞
−∞

e−π(y+iw)
2

dy

is an entire function of w = u+ iv and G(iv) = G(v). Hence G(x+m)

is a constant and we get Fϕ = cϕ. But G(0) = 1 and so c = 1 proving

the proposition. �

The above proposition shows that the Gaussian ϕ is an eigenfunc-

tion of the Fourier transform. We will say more about the spectral

decomposition of F in the next section.
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We introduced the Fourier transform as a unitary operator on L2(R).

Now we extend the definition to L1(R) and prove a useful inversion

formula.

Theorem 2.5. For f ∈ L1(R) ∩ L2(R) the Fourier transform is given

by

Ff(ξ) =

∫
R
f(x)e−2πixξdx.

If we further assume that Ff ∈ L1(R) then for almost every x we have

f(x) =

∫
R
Ff(ξ)e2πixξdξ.

Proof. If ξ = x+m,x ∈ [0, 1) it follows from the definition that

Ff(ξ) =

∫ 1

0

∞∑
n=−∞

f(y + n)e−2πi(y+n)(x+m)dy.

As f is integrable we can interchange the order of summation and

integration to arrive at the formula

Ff(ξ) =

∫
R
f(x)e−2πixξdx.

Under the assumption that Ff is also integrable the inversion formula

F2f(x) = f(−x) leads to

f(x) =

∫
R
Ff(ξ)e2πixξdξ.

This completes the proof of the theorem. �

It is customary to denote the Fourier transform Ff of integrable

functions by f̂ . Thus

f̂(ξ) =

∫
R
f(x)e−2πixξdx.

It is clear from this that the Fourier transform can be defined on all of

L1(R). Note that f̂ for f ∈ L1(R) is a bounded function and

|f̂(ξ)| ≤
∫
R
|f(x)|dx = ‖f‖1.

It can be easily checked, by an application of the Lebesgue dominated

convergence theorem, that f̂ is in fact continuous. But something more
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is true. The following result is known as the Riemann-Lebesgue lemma

in the literature.

Theorem 2.6. For all f ∈ L1(R), f̂ vanishes at infinity; i.e.,f̂(ξ)→ 0

as |ξ| → ∞.

Proof. As L1(R) ∩ L2(R) is dense in L1(R) it is enough to prove the

result for f ∈ L1(R) ∩ L2(R). Recall that f̂(x + m), x ∈ [0, 1) is the

m−th Fourier coefficient of the integrable periodic function

F (y) =
∞∑

n=−∞

f(y + n)e−2πix(y+n)

and hence it is enough to show that the Fourier coefficients of an in-

tegrable function vanish at infinity. It is clearly true of trigonometric

polynomials and as they are dense in L1([0, 1)) the same true for all

integrable functions. �

Another immediate consequence of our definition of the Fourier

transform is the so called Poisson summation formula. If the inte-

grable function f satisfies the estimate |f(y)| ≤ C(1 + y2)−1 then the

series defining V f(x, y, t) converges uniformly. The same is true of V f̂

if f̂ also satisfies such an estimate. For such functions we have the

following result.

Theorem 2.7. Assume that f is measurable and satisfies |f(y)| ≤
C(1 + y2)−1 and |f̂(ξ)| ≤ C(1 + ξ2)−1. Then

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n).

Proof. Since f̂ = V ∗JV f we have JV f(x, y, t) = V f̂(x, y, t). As both

series defining JV f and V f̂ converge uniformly we can evaluate them

at (0, 0, 0) which gives the desired result. �
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When we take f(x) = t−
1
2ϕ(t−

1
2x) for t > 0, it follows that

f̂(ξ) = ϕ(t
1
2 ξ) and hence Poisson summation formula gives the in-

teresting identity

∞∑
n=−∞

e−πtn
2

= t−
1
2

∞∑
n=−∞

e−πt
−1n2

.

We can obtain several identities of this kind by considering eigenfunc-

tions of the Fourier transform.

2.3. Spectral decomposition of F . The spectrum of the Fourier

transform F is contained in the unit circle as F is unitary. Moreover,

as F4 = I any λ in its spectrum σ(F) satisfies λ4 = 1. Hence, σ(F) =

{1,−1, i,−i}. In this subsection we describe explicitly the orthogonal

projections associated to each point of the spectrum.

We have identified at least one eigenfunction, namely the Gaussian.

Let us search for eigenfunctions of the form f(x) = p(x)e−πx
2

where p

is a real valued polynomial. The reason is the following: the Fourier

transform of such a function is given by,

Ff(x+m) = e−π(x+m)2
∫ 1

0

∞∑
n=−∞

p(y + n)e−π(y+n+i(x+m))2dy

for x ∈ [0, 1). As before we are led to consider the function

G(w) =

∫ ∞
−∞

p(y)e−π(y+iw)
2

dy

which is entire. For v ∈ R,

G(iv) =

∫ ∞
−∞

p(y + v)e−πy
2

dy

is a polynomial and hence Ff(x) = q(x)e−πx
2

for another polynomial

q. So it is reasonable to expect eigenfunctions among this class of func-

tions. Let us record this in the following.

Proposition 2.8. Let p be a polynomial with real coefficients. Then

f(x) = p(x)e−πx
2

is an eigenfunction of F with eigenvalue λ if and
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only if ∫ ∞
−∞

p(x− iy)e−πx
2

dx = λp(y).

From the above equation we can infer several things. Calculating

the the derivatives at the origin we have

(−i)k
∫ ∞
−∞

p(k)(x)e−πx
2

dx = λp(k)(0).

Since p is real valued and λ = (−i)n for n = 0, 1, 2, 3 the degree

m of p should satisfy the condition (−i)m+n is real. This means m

should be odd (even) whenever n is odd (resp. even). Moreover, since

F2f(x) = f(−x) we infer that the polynomials p corresponding to real

(imaginary) eigenvalues are even (resp. odd) functions. If we assume

that each p is monic then we also get that p should be of degree 4k+n

if λ = (−i)n, n = 0, 1, 2, 3. With these preparations we can easily show

the existence of eigenfunctions of the Fourier transform.

Theorem 2.9. There exist monic polynomials pk of degree k ∈ N such

that pk(x)e−πx
2

is an eigenfunction of F with eigenvalue (−i)k.

Proof. We consider only the case of λ = 1. The other cases can be

treated similarly. In this case we have to find polynomials p of degree

4k such that ∫ ∞
−∞

p(x− iy)e−πx
2

dx = p(y).

This leads to the equations

4k∑
j=0

1

j!
Cj(−iy)j =

4k∑
j=0

1

j!
p(j)(0)yj

where

Cj =

∫ ∞
−∞

p(j)(x)e−πx
2

dx.

As p is a function of x2 it follows that Cj = 0 unless j is even. Thus

we are led to the equations

p(2j)(0) = (−1)j
∫ ∞
−∞

p(2j)(x)e−πx
2

dx.
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These equations can be solved recursively starting with p(4k)(0) = (4k)!.

The details are left to the reader. �

The polynomials whose existence is guaranteed by the above theorem

are called the Hermite polynomials and denoted by Hk(x). We define

the Hermite functions ϕk(x) = ckHk(x)e−πx
2

with suitably chosen ck

so as to make ‖ϕk‖2 = 1. The importance of the Hermite functions lie

in the following theorem.

Theorem 2.10. The Hermite functions ϕk, k ∈ N form an orthonor-

mal basis for L2(R).

Proof. Here we only prove that they form an orthonormal system. The

completeness will be proved later. Since (f, g) = (f̂ , ĝ) for all f, g ∈
L2(R) it follows that

(ϕ4k+n, ϕ4j+m) = (−i)n−m(ϕ4k+n, ϕ4j+m)

for any n,m ∈ {0, 1, 2, 3}. Thus (ϕ4k+n, ϕ4j+m) = 0 whenever n 6=
m. This argument does not prove the orthogonality within the same

eigenspace.

Consider the operator H = − d2

dx2
+ 4π2x2. By integration by parts

we can easily verify that F(Hf) = H(Ff) for all functions of the form

f(x) = p(x)e−πx
2

with p polynomial. The above shows that Hϕk is an

eigenfunction of F with the same eigenvalue and hence there are real

constants λk such that Hϕk = λkϕk. Integration by parts also shows

that (Hf, g) = (f,Hg) which leads to the equation

λk(ϕk, ϕj) = λj(ϕk, ϕj).

If we can show that λk 6= λj for k 6= j then we can conclude that

(ϕk, ϕj) = δjk

∫
R
ϕk(x)2dx

. To prove that the λk are distinct, we observe that the equation

Hf = λkf for f(x) = p(x)e−πx
2

reduces to

−p(2)(x) + 4πxp(1)(x) + 2πp(x) = λkp(x).
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If p is a polynomial of degree k, a comparison of the coefficients of xk

on both sides of the above equation shows that λk = 2π(2k + 1). This

proves our claim. �

We are now ready to state the explicit spectral decomposition of

F . For j = 0, 1, 2, 3 define L2
j(R) be the subspace of L2(R) for which

{ϕ4k+j : k ∈ N} is an orthonormal basis. Let Pj stand for the orthog-

onal projection of L2(R) onto L2
j(R).

Theorem 2.11. We have L2(R) = ⊕3
j=0L

2
j(R). Every f ∈ L2(R) can

be uniquely written as f =
∑3

j=0 Pjf. The projections are explicitly

given by the Hermite expansion

Pjf =
∞∑
k=0

(f, ϕ4k+j)ϕ4k+j.

We conclude this section with the following generalisation of the

Poisson summation formula.

Theorem 2.12. Let f = ϕ4k+j be any of the Hermite functions. Then

we have
∞∑

n=−∞

f(y + n)e−2πix(y+n) = (−i)j
∞∑

n=−∞

f(x+ n)e2πiny.

Proof. As F = V ∗JV the equation Ff = (−i)jf translates into

JV f(x, y, t) = (−i)jV f(x, y, t). This proves the theorem. �

2.4. Theta transform and Hardy’s theorem. In this section we

return to the Hilbert space L2(M) introduced in section 1.1. We in-

troduce and study a transform called the theta transform. As applica-

tions we show that the Hermite functions form an orthonormal basis

for L2(R) and prove a theorem of Hardy.

Let ϕiτ (x) = eπiτx
2

which belongs to L2(R) even for complex τ pro-

vided =(τ) > 0. Let ψiτ (x) = 1
2πiτ

∂
∂x
ϕiτ (x) = xϕiτ (x). Recall that for

f ∈ L2(R) the Weil-Brezin transform is given by

V f(x, y, t) = e2πit
∞∑

n=−∞

f(x+ n)e2πiny.
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Definition 2.13. The theta transform is defined on L2(M) by

Θ(F, τ) = (V ϕiτ , F ) =

∫
M

V ϕiτ (g)F̄ (g)dg.

We also define Θ∗(F, τ) = (V ψiτ , F ).

Since V is a unitary operator we get the formulas

Θ(V f̄ , τ) =

∫ ∞
−∞

f(x)eπiτx
2

dx

and

Θ∗(V f̄ , τ) =

∫ ∞
−∞

xf(x)eπiτx
2

dx

Note that Θ(F, τ) and Θ∗(F, τ) are functions defined on the upper

half-plane R2
+ = {τ ∈ C : =(τ) > 0}.

Theorem 2.14. For F ∈ L2(M) both Θ(F, τ) and Θ∗(F, τ) are holo-

morphic in the upper half-plane.

Proof. It is clear that Θ(F, τ) is holomorphic in the upper half-plane

when F ∈ C∞(M). If Fn ∈ C∞(M) converges to F ∈ L2(M) then

Θ(Fn, τ) converges to Θ(F, τ) uniformly over compact subsets of the

upper half-plane. This follows from the fact that V (ϕiτ ) is bounded

when τ is restricted to compact subsets. This shows that Θ(F, τ) is

holomorphic. The proof for Θ∗(F, τ) is the same. �

We can decompose H1 as Ho
1 ⊕ He

1 where Ho
1 (resp. He

1) is the

image under V of all odd (even) functions. Note that V ϕiτ ∈ He
1 and

V ψiτ ∈ He
1. Moreover, Θ(F, τ) = 0 if F ∈ Ho

1 and Θ∗(F, τ) = 0 if

F ∈ He
1. We can now prove the following uniqueness theorem for the

theta transform.

Theorem 2.15. For F ∈ H1, F = 0 if and only if Θ(F, τ) =

Θ∗(F, τ) = 0 for all τ ∈ R2
+. Consequently, the set of all functions

{V ϕiτ , V ψiτ , τ ∈ R2
+} is dense in H1.

Proof. If F = G + H where G ∈ He
1 and H ∈ Ho

1 then Θ(F, τ) =

Θ(G, τ). Therefore, Θ(F, τ) = 0 for all τ gives, by taking τ = t+ i,∫ ∞
0

g(x)e−πx
2

eπitx
2

dx = 0
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where G = V (ḡ). By making a change of variables we get∫ ∞
0

g(s
1
2 )s−

1
2 e−πseistds = 0.

As the integrand belongs to L1(R) by the uniqueness theorem for

the Fourier transform we get g = 0. Similarly, the other condition

Θ∗(F, τ) = 0 gives h = 0. Hence the theorem. �

Corollary 2.16. The Hermite functions {ϕk : k ∈ N} form an or-

thonormal basis for L2(R).

Proof. It is enought to show that the set of all functions {tne−πt2 : n ∈
N} is dense in L2(R). Suppose f is orthogonal to all these functions.

Let F = V (f̄) and consider θ(τ) = Θ(F, τ). Evaluating the derivatives

of θ at τ = i we get

θ(n)(i) =

∫ ∞
−∞

f(t)t2ne−πt
2

dt = 0.

As θ is holomorphic we get Θ(F, τ) = 0. As before, if F = G+H,G ∈
He

1, H ∈ H0
1 we have Θ(G, τ) = Θ(F, τ) = 0 and Θ∗(G, τ) = 0. Hence

G = 0. This means that f is odd. Working with Θ∗V (f̄) we can also

conclude that f is even. Hence f = 0 proving the corollary. �

We now use properties of the theta transform to prove a result on

Fourier tranform pairs due to Hardy. This result will be used to con-

struct some more examples of invariant and ultravariant subspaces.

Theorem 2.17. Suppose f ∈ L2(R) satisfies the growth conditions

|f(x)| ≤ Ce−πtx
2

, |Ff(y)| ≤ Ce−
π
t
y2

for some t > 0. Then f(x) = Ce−πtx
2
.

Proof. By dilating by t we can assume that t = 1. Recalling the defini-

tions of ϕiτ and ψiτ we can easily calculate that

Θ(V ϕ−1, τ) = (1− iτ)−
1
2 , Θ∗(V ψ−1, τ) = (1− iτ)−

3
2 .

Given f as in the theorem we can write it as f = g + h, where g(x) =
1
2
(f(x) + f(−x)) and h(x) = 1

2
(f(x) − f(−x)). Observe that both g
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and h satisfy the same growth conditions as f. We therefore, prove the

theorem for even and odd functions separately.

If f is even, consider the decomposition f = g + h where g = 1
2
(f +

Ff) and h = 1
2
(f −Ff). Then Fg = g,Fh = −h and both satisfy the

conditions of the theorem. If f is odd the decompostion g = 1
2
(f+iFf)

and h = 1
2
(f − iFf) gives f = g + h with Fg = −ig and Fh =

ih. This shows that we can assume without loss of generality f is an

eigenfunction of F . We start with the even case, Ff = cf where c = 1

or −1.

We consider the function α(τ) = Θ(V (f̄), τ) which is given by the

integral

α(τ) =

∫ ∞
−∞

f(x)eπiτx
2

dx.

The growth condition on f shows that α(τ) is holomorphic in =(τ) >

−1. Since

Θ(V (f̄), τ) = (V ϕiτ , V f̄) = (ϕiτ , f̄)

using the result (f, g) = (Ff,Fg) we get

Θ(V (f̄), τ) = (−iτ)−
1
2 (ϕ−i

τ
, f̄) = c(−iτ)−

1
2α(
−1

τ
).

In the above calculation we have used the facts that Fϕiτ =

(−iτ)−
1
2ϕ−i

τ
and F f̄ = cf̄ . Therefore, α satisfies α(τ) = c(−iτ)−

1
2α(−1

τ
)

provided both =(τ) > −1 and =(−1
τ

) > −1.

Define a new function β(τ) = (1 − iτ)
1
2α(τ). If we can show that

β(τ) is a constant which means that α(τ) = CΘ(V ϕ−1, τ) then by the

uniqueness theorem for the theta transform we get f = ϕ−1. This will

take care of the even case.

An easy calculation shows that the function β satisfies β(τ) = cβ(−1
τ

)

whenever both =(τ) > −1 and =(−1
τ

) > −1. Define γ(τ) by the setting

it equal to β(τ) when =(τ) > −1 and cβ(−1
τ

) when =(−1
τ

) > −1. If

τ = a + ib, b ≤ −1, then −b = |b| < b2 + a2 so that =(−1
τ

) = b
(a2+b2)

>

−1 as long as a 6= 0. This means that γ(τ) can be extended to the

entire complex plane except possibly τ = −i. With τ = a + ib we

have the estimate |α(τ)| ≤ C(1 + b)−
1
2 , b > −1 which follows from the
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integral defining α and the hypothesis on f. When a2 + b2 ≤ 1 writing

b = −1+δ, δ > 0 we have a2 ≤ 1−b2 = δ(2−δ). This gives the estimate

|(1− iτ)γ(τ)| ≤ C(1 + b)(1 +
|a|

1 + b
)
3
2

≤ Cδ(1 + 2δ−
1
2 )

3
2 ≤ Cδ

1
4 (2 + δ

1
2 )

3
2 .

This together with the property γ(τ) = cγ(−1
τ

) shows that (1− iτ)γ(τ)

tends to zero as τ goes to −i. Hence γ is entire. It is also bounded

(since γ(τ) = cγ(−1
τ

) ) and hence γ reduces to a constant. This proves

that β is a constant.

When f is an odd eigenfunction of the Fourier transform we work

with (1− iτ)
3
2 Θ∗(V f̄ , τ) and show that f(x) = Cxe−πx

2
. But now the

constant C has to be zero if the growth condition on f is satisfied.

Thus the odd component of f is zero proving the theorem.

�

2.5. Fourier transforms of Lp functions. So far we have considered

Fourier transforms of functions which are either integrable or square

integralble. It is therefore natural to ask if we can define Fourier trans-

forms of functions coming from other Lp spaces. There is a very simple

way of defining Fourier transforms of Lp functions when 1 < p < 2. For

p > 2 we cannot define Fourier transform on Lp without some knowl-

edge of distributions. So we concentrate mainly on Lp(R), 1 < p < 2.

We start withe the observation that any f ∈ Lp(R), 1 < p < 2 can be

decomposed as f = g + h where g ∈ L1(R) and h ∈ L2(R). Indeed, we

can simply define g(x) = f(x) when |f(x)| > 1, g(x) = 0 otherwise and

let h = f − g. Then it is easily verified that g ∈ L1(R) and h ∈ L2(R).

The decomposition is clearly not unique. Nevertheless, it allows us to

define the Fourier transform of f by f̂ = ĝ + Fh. We need to check

that this definition is independent of the decomposition. If we have

f = gi + hi, gi ∈ L1(R), hi ∈ L2(R), i = 1, 2 then g1 − g2 = h2 − h1 so

that ĝ1 − ĝ2 = Fh2 −Fh1. Hence ĝ1 +Fh1 = ĝ2 +Fh2 proving that f̂

is well defined.
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From the definition it follows that f̂ for f ∈ Lp(R), 1 < p < 2 is a sum

of an L∞ function and an L2 function. We also know that the Fourier

transform takes L1 continuously into L∞ and L2 onto L2. An applica-

tion of an interpolation theorem of Riesz and Thorin, which we do not

prove, shows that the Fourier transform takes Lp continuously into Lq

where 1 < p < 2, p + q = pq. The resulting inequality ‖f̂‖q ≤ ‖f‖p is

known as the Hausdorff-Young inequality for the Fourier transform.

In this section we are mainly interested in the problem of recon-

structing the function f from its Fourier transform. On L2 the inver-

sion formula f = F∗Ff does this. When both f and f̂ are integrable

we also have the inversion formula

f(x) =

∫
R
f̂(ξ)e2πixξdξ

which holds for almost every x. For f ∈ Lp(R), 1 ≤ p ≤ 2 we define,

for every R > 0,

SRf(x) =

∫ R

−R
f̂(ξ)e2πixξdξ

which is the analogue of the partial sums ′Snf
′ for the Fourier series.

Note that the integral converges and SRf well defined- this is clear

since

SRf(x) =

∫
R
χ(−R,R)(ξ)f̂(ξ)e2πixξdξ

, f̂ ∈ Lq(R) and χ(−R,R) ∈ Lp(R). We are interested in knowing if SRf

converges f in the norm as R tends to infinity. As in the case of Fourier

series the L2 case is easy to settle.

Theorem 2.18. For every f ∈ L2(R) the partial sums SRf converge

to f in the L2 morm as R tends to infinity.

Proof. We follow the standard strategy of proving uniform boundedness

of SR on L2(R) and convergence of SRf to f on a dense subspace of

L2(R). The uniform boundedness follows from the Plancherel theorem:

‖SRf‖22 =

∫
R
χ(−R,R)(ξ)|f̂(ξ)|2dξ ≤ ‖f‖22.
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Let Cc(R) be the space of all continuous functions with compact sup-

port which is dense in L2. Define

W = {g ∈ L2(R) : Fg ∈ Cc(R)}.

The density of Cc(R) in L2 and Plancherel theorem shows that W is

also dense in L2. Moreover, for f ∈ W with f̂ supported in (−a, a) we

have

SRf(x) =

∫ a

−a
f̂(ξ)e2πixξdξ = f(x)

as soon as R > a. Thus, SRf(x) converges to f(x) almost everywhere.

Further,

‖SRf − SR′f‖22 =

∫
R≤|ξ|≤R′

|f̂(ξ)|2dξ

shows that SRf is Cauchy in L2 and hence converges to some L2 func-

tion. As it already converges to f almost everywhere, the L2 limit has

to be f itself. Thus SRf converges to f in L2 for all f ∈ W. This

completes the proof of the theorem. �

We now turn our attention to SRf for functions from Lp(R). We

define the continuous analogue of the Dirichlet kernel by

sR(x) =

∫
R
χ(−R,R)(ξ)e

−2πixξdξ.

A simple calculation shows that

sR(x) = R

(
sin(2πRx)

πRx

)
.

Therefore, sR ∈ Lq(R) for all q ≥ 2 and hence the convolution

f ∗ sR(x) =

∫
R
f(x− y)sR(y)dy

makes sense for all f ∈ Lp(R), 1 ≤ p ≤ 2. We claim that SRf = f ∗ sR
for all f ∈ L1∩Lp(R). To prove this, consider the two operators defined

on L1 ∩  L2(R) by Tg = F(f ∗ g) and Sg = F(f)F(g). Clearly, both

extend to L2 as bounded linear operators and by direct calculation

Tg = Sg for all g ∈ L1 ∩  L2(R). Therefor, F(f ∗ g) = F(f)F(g) for all

g ∈ L2. this proves our claim.
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As in the case of Fourier series we show that SR are not uniformly

bounded on L1(R). To prove this we first establish an analogue of

Fejer’s theorem for the Fourier transform. We define, for all f ∈ W

(say)

σRf(x) =

∫
R
λR(ξ)f̂(ξ)e2πixξdξ

where

λR(ξ) = (2R)−1
∫
R
χ(−R,R)(ξ − η)χ(−R,R)(η)dη.

It is easy to see that λR(ξ) is a continuos function supported in

(−2R, 2R) and λR(0) = 1. Naturally, we expect σRf to converge to

f. Since λ̂R(x) = (2R)−1(sR(x))2 it follows that λ̂R is integrable with

integral one. Consequently, σRf = f ∗ λ̂R. We have the following ana-

logue of Fejer’s theorem.

Theorem 2.19. For every f ∈ Lp(R), 1 ≤ p <∞, σRf converges to f

in the norm.

Proof. Since λ̂R is integrable, we have ‖σRf‖p ≤ ‖f‖p. Therefore, it is

enough to show that σRf converges to f in the norm for all f in Cc(R)

which is dense in every Lp(R), 1 ≤ p <∞. As integral of λ̂R is one we

have

σRf(x) =

∫
R
(f(x− y)− f(x))λ̂R(y)dy.

By Minkowski’s integral inequality, it follows that

‖σRf‖p ≤
∫
R
‖f(· − y)− f‖pλ̂R(y)dy.

When |y| > 1 we have the estimate λ̂R(y) ≤ CR−1|y|−2 and conse-

quently ∫
|y|>1

‖f(· − y)− f‖pλ̂R(y)dy ≤ C‖f‖pR−1

which goes to zero as R approaches infinity. On the other hand the

rest of the integral is bounded by∫
|y|≤R

‖f(· − y/R)− f‖pλ̂1(y)dy.
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Since f is compactly supported we can choose R large enough so that

‖f(· − y/R)− f‖p is uniformly small for all y in the support of f. This

completes the proof. �

We can now show that SR are not uniformly bounded on L1(R). First

we remark that sR is not integrable. To see this, suppose sR ∈ L1(R).

then by Fourier inversion we should have

χ(−R,R)(x) =

∫
R
sR(ξ)e2πixξdξ

for almost every x. But χ(−R,R)(x) cannot be equal to equal to any

continuous function almost everywhere as it has jump discontinuities

at R and −R.

Theorem 2.20. The partial sum operators SR are not uniformly

bounded on L1(R).

Proof. Suppose ‖SRf‖1 ≤ C‖f‖1 for all f ∈ L1(R) with C independent

of R. Taking f = λ̂R we get ‖λ̂R ∗ s1‖1 ≤ C. As R tends to infinity,

λ̂R ∗ s1 converges to s1 in L2 and hence almost everywhere along a

subsequence. In view of Fatou’s lemma this leads to the conclusion

that ∫
R
|s1(x)|dx ≤ C lim inf

R→∞

∫
R
|λ̂R ∗ s1(x)dx ≤ C

which is a contradiction since s1 is not integrable.

�

It turns out that the partial sum operators SR defined on L1∩Lp(R)

extends to the whole of Lp(R) as a bounded linear operator for all

values of p, 1 < p < ∞. The proof is not easy- one way to prove this

result is to use the corresponding result on the partial sum operators

Sn for the Fourier series. We will return to this problem later but now

we look at a related problem.

The operators SR and σR both have one thing in common: both are

defined by multiplying f̂ by a bounded function and then inverting the
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Fourier transform. More generally we can define operators of the form

Tmf(x) =

∫
R
m(ξ)f̂(ξ)e2πixξdξ

where m is a bounded function. This kind of operators are called

multiplier transforms and the function m is called a Fourier multiplier.

Note that Tmf makes sense for all f ∈ W ∩ L1(R) where f is the

subspace defined earlier in this section. As m is bounded it is clear that

Tm extends to L2(R) as a bounded operator and ‖Tmf‖2 ≤ ‖m‖∞‖f‖2.
But the operator may not extend to other Lp spaces as a bounded

operator. We already have the example of SR corresponding to the

multiplier m = χ(−R,R).

An important class of multiplier studied in the literature is the so

called Bochner-Riesz means SδR corresponding to the multiplier

mδ
R(ξ) = (1− |ξ|2/R2)δ+ = (1− |ξ|2/R2)δχ(−R,R)(ξ)

where δ ≥ 0. In other words,

SδRf(x) =

∫
R
(1− |ξ|2/R2)δ+f̂(ξ)e2πixξdξ.

We note that S0
R = SR and the multiplier becomes smoother and

smoother as δ increases. The main result we want to prove is the

following.

Theorem 2.21. Let δ > 0. Then SδR, initially defined on L1 ∩ Lp(R)

extend to Lp(R) as uniformly bounded operators for all 1 ≤ p <∞. As

R tends to infinity, SδRf converge to f in the norm.

Proof. We show that SδRf = f ∗sδR with an explicit kernel. By studying

the asymptotics we show that the kernel is uniformly integrable as

soon as δ > 0. The theorem then follows from Young’s inequality for

convolution. �

As in the case of partial sums and Fejer means the kernel is simply

defined by

sδR(x) =

∫ R

−R
(1− |ξ|2/R2)δe2πixξdξ.
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Observe that sδR(x) = Rsδ1(Rx) and therefore our claim about the uni-

form integrability of the kernel follows from the next lemma.

Lemma 2.22. For any δ ≥ 0 we have

|
∫ 1

−1
(1− s2)δeitsds| ≤ C(1 + t2)−

1
2
(δ+1).

Proof. The integral is clearly bounded and hence we only need to show

that it is bounded by C|t|−δ−1 for |t| > 1. As the integral is an even

function of t we can assume that t is positive. Consider the domain

in C obtained by removing the intervals (−∞,−1) and (1,∞). Let

F (z) = (1 − z2)δ be the holomorphic function in that region which is

real and positive on (−1, 1). Integrating F along the boundary of the

rectangle with corners at (−1, 0), (1, 0), (1, a) and (−1, a) with a > 0

and using Cauchy’s theorem we get∫ 1

−1
(1− x2)δeitxdx−

∫ 1

−1
(1− (x+ ia)2)δeit(x+ia)dx

= −i
∫ a

0

(1− (1 + iy)2)δeit(1+iy)dy + i

∫ a

0

(1− (−1 + iy)2)δeit(−1+iy)dy.

As a tends to infinity the second integral on the left hand side goes to

zero leaving us with∫ 1

−1
(1−x2)δeitxdx = −ieit

∫ ∞
0

(y2−2iy)δe−tydy+ie−it
∫ ∞
0

(y2+2iy)δe−tydy.

The integrals on the right hand side are clearly bounded by

C

∫ ∞
0

(yδ + y2δ)e−tydy ≤ C(t−δ−1 + t−2δ−1)

which proves the lemma.

�

For any δ > −1/2 the Bessel function Jδ is defined by

Jδ(t) =
(t/2)δ

Γ(δ + 1/2)Γ(1/2)

∫ 1

−1
(1− s2)δ−1/2eitsds.

In terms of the Bessel function we have

sδR(x) = Γ(δ + 1/2)Γ(1/2)R(πR|x|)−δ−1/2Jδ+1/2(2πR|x|).
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The above lemma shows that Jδ(t) decays like t−1/2 as t tends to infinity

for all δ ≥ 1/2. It can be shown that the same is true for all δ > −1/2.

3. Fourier transform on Rn

In the previous section we defined the Fourier transform on functions

defined on R. We can easily extend the definition to functions on Rn.

Instead of H1 we consider the (2n+ 1) dimensional group Hn which is

Rn × Rn × R with the group law

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + x · y′).

Let Γ = Zn×Zn×Z. Then Γ is a subgroup of Hn so that we can form

the quotient M = Γ/Hn consisting of all right cosets of Γ. Functions on

M are naturally identified with left Γ−invariant functions on Hn. As

the Lebesgue measure dxdydt is left Γ− invariant we can form L2(M)

using the Lebesgue measure restricted to M. As a set we can identify

M with [0, 1)2n+1 and we just think of L2(M) as L2([0, 1)2n+1).

As before Fourier expansion in the last variable allows us to decom-

pose L2(M) into a direct sum of orthogonal subspaces. Simply define

Hk to be the set of all f ∈ L2(M) which satisfy the condition

f(x, y, t+ s) = e2πiksf(x, y, t).

Then Hk is orthogonal to Hj whenever k 6= j and any f ∈ L2(M) has

the unique expansion

f =
∞∑

k=−∞

fk, fk ∈ Hk.

We are mainly interested in H1 which is a Hilbert space in its own

right.

Define J as in the one dimesional case and let V : L2(Rn)→ H1 be

defined by

V f(x, y, t) = e2πit
∑
m∈Zn

f(x+m)e2πim·y.
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Then V is unitary and we simply define F = V ∗JV. It is then clear that

F is a unitary operator on L2(Rn). All the results proved for functions

on R remain true now. We record the following two theorems.

Theorem 3.1. The Fourier transform F satisfies: (i) F4f = f, for

every f ∈ L2(Rn) (ii) F2f(x) = f(−x) for almost every x ∈ Rn and

(iii) ‖Ff‖2 = ‖f‖2.

Theorem 3.2. For f ∈ L1(Rn)∩L2(Rn) the Fourier transform is given

by

Ff(ξ) =

∫
Rn
f(x)e−2πix·ξdx.

If we further assume that Ff ∈ L1(Rn) then for almost every x we

have

f(x) =

∫
Rn
Ff(ξ)e2πix·ξdξ.

The eigenfunctions of F are obtained by taking tensor products of

the one dimensional Hermite functions. For each α ∈ Nn we define

Φα(x) = ϕα1(x1)ϕα2(x2)...ϕα1(xn).

Then it follows that FΦα = (−i)|α|Φα where |α| =
∑n

j=1 αj. Moreover,

{Φα : α ∈ Nn} is an orthonormal basis for L2(Rn). Thus every f ∈
L2(Rn) has an expansion

f =
∑
α∈Nn

(f,Φα)Φα

the series being convergent in the L2 sense. Defining Pkf =∑
|α|=k(f,Φα)Φα we can write the above in the compact form f =∑∞
k=0 Pkf. Note that F(Pkf) = (−i)kPkf. The Hermite functions Φα

are eigenfunctions of the Hermite operator H = −∆ + 4π2|x|2 where

∆ is the Laplacian. More precisely, HΦα = (2|α| + n)Φα where

|α| =
∑n

j=1 αj. Thus Pkf is just the orthogonal projection of f on

the k- th eigenspace spanned by {Φα : |α| = k}.
We now look at some subspaces of L2(Rn) that are left invariant

under the action of Fourier transform. We make a formal definition:
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Definition 3.3. A subspace W of L2(Rn) is said to be invariant under

F if Ff ∈ W whenever f ∈ L2(Rn).

Some examples of such subspaces include the Hermite-Sobolev

spaces, the Schwartz space, the Hermite-Bergman spaces and

eigenspaces of the Fourier transform.

3.1. The Schwartz space. Our first example of an invariant subspace

is provided by the spaces of Schwartz functions. As {Φα : α ∈ Nn} is

an orthonormal basis for L2(Rn) it follows that f ∈ L2(Rn) if and only

if
∑

α∈Nn |(f,Φα)|2 <∞. Since (Ff,Φα) = (−i)|α|(f,Φα) any subspace

of L2(Rn) defined in terms of the behaviour of |(f,Φα)| will be invariant

under the Fourier transform. We can define a whole family of invariant

subspaces. Indeed, for each s > 0 define W s
H(Rn) to be the subspace

of L2(Rn) consisting of functions f for which

‖f‖22,s =
∑
α∈Nn

(2|α|+ n)s|(f,Φα)|2 <∞.

We let S(Rn) = ∩s>0W
s
H(Rn). This is called the Schwartz space, mem-

bers of which are called Schwartz functions.

Theorem 3.4. The Schwartz space has the following properties. (i)

S(Rn) is a dense subspace of L2(Rn); (ii) S(Rn) is invariant under F
and (iii) F : S(Rn)→ S(Rn) is one to one and onto.

The density follows from the fact that finite linear combinations of

Hermite functions form a subspace of S(Rn) which is dense in L2(Rn).

The invariance follows from that of each of W s
H(Rn). As F(F∗f) = f

the surjectivity is proved.

According to our definition a function f ∈ S(Rn) if and only if

|(f,Φα)| ≤ Cm(2|α| + n)−m for all m ∈ N. It is desirable to have an

equivalent definition which does not involve the Hermite coefficients.

The Hermite functions Φα are known to be uniformly bounded, i.e.,

‖Φα‖∞ ≤ C for all α. In view of this we see that the series

f(x) =
∑
α∈Nn

(f,Φα)Φα(x)



40 THANGAVELU

converges uniformly whenever f ∈ W s
H(Rn) with s > n. Indeed, writing

f(x) =
∑
α∈Nn

(f,Φα)(2|α|+ n)
s
2 (2|α|+ n)−

s
2 Φα(x),

applying Cauchy-Schwarz inequality and using the fact that∑
|α|=k

1 =
(k + n− 1)!

k!(n− 1)!
= O(kn−1)

we get

|f(x)|2 ≤ ‖f‖2s
∞∑
k=0

(2k + n)−s+n−1 ≤ C‖f‖2s.

More generally we have the following theorem known as Sobolev em-

bedding theorem.

Theorem 3.5. Suppose f ∈ W s
H(Rn) with s > n+m. Then ‖∂βf‖∞ ≤

Cm‖f‖s for all |β| ≤ m.

In order prove this theorem we need the following properties of the

Hermite functions. Let Aj = − ∂
∂xj

+ 2πxj and Bj = ∂
∂xj

for j =

1, 2, ..., n. Let ej be the coordinate vectors in Rn with 1 in the j-th place.

It can be verified that AjBj + BjAj = 2Hj and AjBj − BjAj = −4πI

where Hj is the Hermite operator in xj. Thus, 2H =
∑n

j=1(AjBj +

BjAj).

Proposition 3.6. For any α ∈ Nn and j = 1, 2, ..., n, AjΦα =

2π
1
2 (αj + 1)

1
2 Φα+ej , BjΦα = 2π

1
2 (αj)

1
2 Φα−ej .

Proof. It is enough to prove the proposition when n = 1. Let us write

A = A1 and B = B1. From the relation AB − BA = −4πI we obtain

A2B − BA2 = −8πA. Another simple calculation shows that HA =

A(H+4πI) which leads to the conclusion that Aϕk is an eigen function

of H with eigenvalue 2π(2k+3) and hence Aϕk = ckϕk+1 for a constant

ck. Similarly, we can show that Bϕk = dkϕk−1. Since BA = H+2πI we

get ckdk+1 = 2π(2k+2). On the other hand, 2xϕk(x) = (A+B)ϕk(x) =

ckϕk+1(x) + dkϕk−1(x) so that

ck =

∫
R

2xϕk(x)ϕk+1(x)dx = dk+1.
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Hence we get c2k = 2π(2k+2) and d2k = 2π(2k) proving the proposition.

�

The Sobolev embedding theorem follows from the above properties

of the Hermite functions. Since Bj − Aj = 2 ∂
∂xj

it follows that

∂βΦα = 2−|β|(B − A)βΦα

where B−A = (B1−A1, ...., Bn−An). From the proposition it follows

that

|∂βΦα(x)| ≤ C(2|α|+ n)
1
2
|β|.

This estimate, along with Cauchy-Schwarz, proves the theorem.

The Sobolev embedding theorem leads to the following useful char-

acterisation of the Schwartz space.

Theorem 3.7. A function f ∈ S(Rn) if and only if f ∈ C∞(Rn) and

xα∂βf ∈ L∞(Rn) for all α and β.

Proof. The condition xα∂βf ∈ L∞(Rn) for all α and β is clearly equiv-

alent to xα∂βf ∈ L2(Rn) for all α and β. This implies that Hmf ∈
L2(Rn) for all m ∈ N and consequently |(f,Φα)| ≤ Cm(2|α|+ n)−m for

all α. Thus, f ∈ Wm
H (Rn) for all m and hence f ∈ S(Rn). To prove the

converse, suppose f ∈ S(Rn) so that f ∈ Wm
H (Rn) for all m ∈ N. We

need to consider

xα∂βf(x) =
∑
µ∈Nn

(f,Φµ)xα∂βΦµ(x).

Using the relations 2xj = (Aj+Bj) and 2∂j = (Bj−Aj) we can express

xα∂βΦµ(x) in terms of (B−A)γΦµ. Using the proposition and Cauchy-

Schwarz inequality we can easily check that xα∂βf(x) is bounded. �

The Schwartz space can be made into a locally convex topological

vector space such that S(Rn) is continuously embedded in W s
H(Rn) for

every s > 0. The dual of S(Rn) denoted by S ′(Rn) is called the space

of tempered distributions. It can be shown that u ∈ S ′(Rn) if and only

if ∑
α∈Nn

(2|α|+ n)−s|(f,Φα)|2 <∞
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for some s > 0. The Fourier transform has a natural extension to

S ′(Rn) given by (Fu, f) = (u,Ff) where the brackets here stand for

the action of a tempered distribution on a Schwartz function.

3.2. Weighted Bergman spaces. From the definition it follows that

f ∈ S(Rn) if and only if for every s > 0, there are constants Cs such

that

|(f,Φα)| ≤ Cs(2|α|+ n)−s, α ∈ Nn.

It is natural to consider conditions of the form

|(f,Φα)| ≤ Ce−(2|α|+n)s, α ∈ Nn

for some s > 0. This will lead to another family of invariant subspaces

which can be identified with certain Hilbert spaces of entire functions.

For each t > 0 let us consider the weight function

Ut(x, y) = 2n(sinh(4t))−
n
2 e2π(tanh(2t)|x|

2−coth(2t)|y|2).

We define Ht(Cn) to be the subspace of entire functions satisfying

‖F‖2Ht =

∫
Rn

∫
Rn
|F (x+ iy)|2Ut(x, y)dxdy <∞.

These are examples of weighted Bergman spaces. We call them

Hermite-Bergman spaces for reasons which will become clear soon. We

let Ht(Rn) to stand for the space of all restrictions of F ∈ Ht(Cn) so

that we can think of Ht(Rn) as a subspace of L2(Rn).

Theorem 3.8. For each t > 0 the space Ht(Rn) is invariant under the

Fourier transform.

Since Φα(x) = Hα(x)e−π|x|
2

where Hα is a polynomial we can extend

Φα to Cn as an entire function simply by setting Φα(z) = Hα(z)e−πz
2

where z2 =
∑n

j=1 z
2
j , z = (z1, z2, ..., zn) ∈ Cn. The reader can verify by

direct calulation that Φα ∈ Ht(Rn) for any t > 0. Moreover, it can be

shown that the functions Φ̃α(x) = e−(2|α|+n)tΦα(x) form an orthonormal

system in Ht(Rn).
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Theorem 3.9. The family {Φ̃α(x) : α ∈ Nn} is an orthonormal basis

for Ht(Rn). Equivalently, {Φ̃α(z) : α ∈ Nn} is an orthonormal basis

for Ht(Cn).

We will not attempt a proof of this theorem but only indicate a major

step involved in the proof. Before that let us see how this theorem can

be used to prove the invariance of Ht(Rn). Any f ∈ Ht(Rn) has an

expansion

f =
∑
α∈Nn

cαΦ̃α

where the sequence cα is square summable. It is now obvious that

Ff =
∑
α∈Nn

(−i)|α|cαΦ̃α

also belongs to Ht(Rn).

Let Bt(Cn) be the Bergman space consisting of all entire functions

F that are square integrable with respect to the weight function

pt/2(y) = t−
n
2 e−

π
t
|y|2 .

That is, F ∈ Bt(Cn) if and only if F (x+ iy) is entire and

‖F‖2Bt(Cn) =

∫
Rn

∫
Rn
|F (x+ iy)|2pt/2(y)dxdy <∞.

As before we let Bt(Rn) stand for the subspace consisting of all restric-

tions of members of Bt(Cn) to Rn. We have the following characterisa-

tion of these Bergman spaces.

Theorem 3.10. A function F ∈ Bt(Cn) if and only if F = f ∗ pt for

some f ∈ L2(Rn). Moreover,∫
Rn

∫
Rn
|F (x+ iy)|2pt/2(y)dxdy =

∫
Rn
|f(x)|2dx.

Proof. When F = f ∗ pt so that FF (ξ) = Ff(ξ)e−2πt|ξ|
2

the inversion

formula shows that the prescription

F (x+ iy) =

∫
Rn
Ff(ξ)e−2πt|ξ|

2

e2πi(x+iy)·ξdξ
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gives an entire extension of F. Moreover, by Plancherel theorem∫
Rn
|F (x+ iy)|2dx =

∫
Rn
|Ff(ξ)|2e−4πt|ξ|2e−4πy·ξdξ.

Integrating both sides against pt/2(y) and simplifying we get∫
Rn

∫
Rn
|F (x+ iy)|2pt/2(y)dxdy =

∫
Rn
|f(x)|2dx.

The converse is not so easy to prove. We need to introduce a related

space through which we will obtain the converse. �

The space Bt(Cn) was introduced and studied by Bargmann and

Segal. Bargmann gave a direct proof of the above theorem but we wish

to go through the Fock spaces which is more instructive. Let Ft(Cn)

be the space of all entire functions G for which

‖G‖2Ft(Cn) =

∫
Rn

∫
Rn
|G(x+ iy)|2e−

1
2t
π(|x|2+|y|2)dxdy <∞.

It is then easy to check that F ∈ Bt(Cn) if and only if G(z) =

F (z)e
1
4t
z2 ∈ Ft(Cn). In view of this we only need to prove the following.

Theorem 3.11. If G ∈ Ft(Cn) then there exists f in L2(Rn) such that

G(x) = f ∗ pt(x)e
1
4t
π|x|2 .

We prove the theorem after some preparation. Let O(Cn) be the

space of all entire functions equipped with the topology of uniform

convergence over compact subsets of Cn. We claim that the inclusion

Ft(Cn) ⊂ O(Cn) is continuous.

Lemma 3.12. Given any compact K ⊂ Cn there exists a constant CK

such that

sup
z∈K
|G(z)| ≤ CK‖G‖Ft(Cn), F ∈ Ft(Cn).

Proof. By mean value theorem for entire functions we have

G(z) = (πr2)−n
∫
D(z,r)

G(w)dw
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where D(z, r) is the polydisc {w ∈ Cn : |zj − wj| ≤ r, j = 1, 2, ..., n}.
By Cauchy-Schwarz inequality we get

|G(z)|2 ≤ (πr2)2ne
1
2t
(|z|+r)2‖G‖2Ft(Cn)

from which we get the required estimate. �

Consider now the functions ζtα(z) = d−1α zα where dα are chosen so

that ∫
Cn
|ζtα(z)|2e−

1
2t
|z|2dz = 1.

As the measure e−
1
2t
|z|2dz is radial it follows that {ζtα : α ∈ Nn} forms

an orthonormal system in Ft(Cn).

Lemma 3.13. The system {ζtα : α ∈ Nn} is an orthonormal basis for

Ft(Cn).

Proof. We first observe that Ft(Cn) is complete. Indeed, if Gn is

Cauchy in Ft(Cn), then it converges to some G ∈ L2(Cn, e−
1
2t
|z|2dz). In

view of Lemma 3.12 Gn also converges uniformly over compact subsets.

Hence the limit function G is entire which proves the completeness of

Ft(Cn).

Coming to the proof of the lemma, the Taylor expansion of any entire

G can be written as

G(z) =
∑
α∈Nn

cαdαζ
t
α(z)

where cα are the Taylor coefficients of G. The series converges uniformly

over compact subsets. As G ∈ Ft(Cn), owing to the orthonormality of

the system {ζtα : α ∈ Nn} the series also converges in Ft(Cn) to some

G1. From the previous lemma, the series then converges toG1 uniformly

on compact subsets. This forces G1 = G and hence the lemma. �

We define another family of functions Φt
α on Rn by the prescription

Φt
α ∗ pt(x) = ζtα(x)e−

1
4t
π|x|2 .



46 THANGAVELU

It is easy to see that Φt
α ∈ L2(Rn). As both sides of the defining relation

above extend to Cn as entire functions it follows that

Φt
α ∗ pt(z) = ζtα(z)e−

1
4t
πz2

for all z ∈ Cn.

Lemma 3.14. The system {Φt
α : α ∈ Nn} is an orthonormal basis for

L2(Rn).

Proof. We observe that∫
Cn
ζtα(z)ζtβ(z)e−

1
2t
π|z|2dz =

∫
Rn

∫
Rn

Φt
α∗pt(x+iy)Φt

β ∗ pt(x+ iy)e−
1
t
π|y|2dxdy.

Using the result of Theorem we get

(Φt
α,Φ

t
β) = (ζtα, ζ

t
β) = δα,β

which proves the orthonormality of the system. The completeness fol-

lows that of the system ζtα. �

We are now in a position to prove Theorem. We write the Taylor

expansion of G as

G(z) =
∑
α∈Nn

cαζ
t
α(z)

and define

f =
∑
α∈Nn

cαΦt
α.

Then clearly f ∈ L2(Rn) and ‖f‖2 = ‖G‖Ft(Cn). Moreover, from the

definition of Φt
α it follows that

f ∗ pt(z) = G(z)e−
1
4t
πz2 .

Hence the theorem.
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3.3. Spherical harmonics. In this subsection we look for some more

eigenfunctions of the Fourier transform which have some symmetry. As

in the one dimensional case we consider functions of the form f(x) =

p(x)e−π|x|
2
. This will be an eigenfunction of F if and only p satisfies∫

Rn
p(x− iy)e−π|x|

2

dx = λp(y).

If this is true for all y ∈ Rn then we should also have∫
Rn
p(x+ y)e−π|x|

2

dx = λp(iy).

Integrating in polar coordinates the integral on the left is∫ ∞
0

|Sn−1|
(∫

Sn−1

p(y + rω)dσ(ω)

)
e−πr

2

rn−1dr

where dσ is the normalised surface measure on the unit sphere Sn−1. If

p is homogeneous of degree m then p(iy) = imp(y) and hence for such

polynomilas the equation∫
Rn
p(x+ y)e−π|x|

2

dx = λimp(y)

will be satisfied for λ = (−i)m if p has the mean value property∫
Sn−1

p(y + rω)dσ(ω) = p(y).

Such functions are precisely the harmonic functions satisfying ∆u = 0.

Thus we have proved

Theorem 3.15. Let f(x) = p(x)e−π|x|
2

where p is homogeneous of

degree m and harmonic. Then Ff = (−i)mf.

Let Pm stand for the finite dimensional space of homogeneous har-

monic polynomilas of degree m. The above theorem says that the fi-

nite dimensional subspace of L2(Rn) consisting of functions of the form

p(x)e−π|x|
2
, p ∈ Pm is invariant under the Fourier transform. We claim

that the following extension is true.

Theorem 3.16. Let f ∈ L2(Rn) be of the form f(x) = p(x)g(|x|) where

p ∈ Pm. Then Ff(ξ) = p(ξ)G(|ξ|). Thus the subspace of functions of
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the form f(x) = p(x)g(|x|), p ∈ Pm is invariant under the Fourier

transform.

Proof. When f(x) = p(x)g(|x|), p ∈ Pm is from L2 the function g

satisfies ∫ ∞
0

|g(r)|2rn+2m−1dr <∞.

We let Dn+2m to stand for the space of all such functions with the

obvious norm. We claim that the subspace W consisting of finite linear

combinations of e−πt|x|
2

as t runs through positive reals is dense in

Dn+2m. To see this suppose g ∈ Dn+2m satisfies∫ ∞
0

e−πtr
2

g(r)rn+2m−1dr = 0

for all t > 0. Differentiating the integral k times at t = 1 we get∫ ∞
0

e−πr
2

r2kg(r)rn+2m−1dr = 0

for all k ∈ N. Thus the function g(r)rn+2m−1e−
1
2
πr2 is orthogonal to all

functions of the form P (r2)e−
1
2
πr2 where P runs through all polynomi-

las. As this is a dense class in L2((0,∞), dr) we get g = 0.

In view of this density, it is enough to prove that W is invariant

under Fourier transform. But this is easy to check. For t > 0 we let

ft(x) = tnf(tx) so that F(ft)(ξ) = Ff(t−1ξ). If f(x) = p(x)e−πt
2|x|2

take g(x) = p(x)e−π|x|
2

and consider

F(f)(ξ) = t−n−mF(gt)(ξ) = t−n−mF(g)(t−1ξ).

Since Fg(ξ) = (−i)mg(ξ) we get

F(f)(ξ) = t−n−2m(−i)mp(x)e−πt
−2|x|2 .

This proves that W is invariant and hence the theorem follows. �

The above theorem gives rise to an operator T nm on the space Dn+2m

defined as follows. If g ∈ Dn+2m then for p ∈ Pm the function

p(x)g(|x|) ∈ L2(Rn) whose Fourier transform is of the form p(x)G(|x|).
As F is unitary it follows that G ∈ Dn+2m. We define T nmg = G. Note

that ‖T nmg‖ = ‖g‖ where ‖ · ‖ is the norm in Dn+2m. We can think of
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g(|x|) as a radial function on Rn+2m whose n+ 2m dimensional Fourier

transform will be a radial function, say G0(|x|). We define another op-

erator T n+2m
0 on Dn+2m by letting T n+2m

0 g = G0 It is also clear that

‖T n+2m
0 g‖ = ‖g‖. If we denote the Fourier transform on Rn by Fn then

T n+2m
0 = Fn+2m. Calculations done in the proof of the above theorem

shows that T nmg = (−i)mT n+2m
0 g whenever g ∈ W. The density of this

subspace gives

Theorem 3.17. Let f ∈ L2(Rn) be of the form f(x) = p(x)g(|x|), p ∈
Pm. Then Fn(f) = (−i)mpFn+2mg.

The above result is known as the Hecke-Bochner formula for the

Fourier transform. We conclude our discussion on invariant subspaces

with the following result which shows that the Fourier transform of a

radial function reduces to an integral transform whose kernel is a Bessel

function. Let Jα stand for the Bessel function of type α > −1.

Theorem 3.18. If f(x) = g(|x|) is radial and integrable then

Fn(f)(ξ) = cn

∫ ∞
0

g(r)
Jn

2
−1(2πr|ξ|)

(2πr|ξ|)n2−1
rn−1dr.

Proof. As f is radial

Fn(f)(ξ) = |Sn−1|
∫ ∞
0

g(r)

(∫
Sn−1

e−2πirω·ξdσ(ω)

)
rn−1dr.

The inner integral is clearly a radial function as the measure dσ is

rotation invariant. It can be shown that the inner integral is a constant

multiple of
Jn

2−1(2πr|ξ|)

(2πr|ξ|)
n
2−1 . This completes the proof. �

3.4. Ultravariant subspaces of L2(Rn). In the previous section we

studied several subspaces of L2(Rn) that are invariant under F . But

not all subspaces are invariant. For example, L1∩L2(Rn) is not invari-

ant under F . In this section we are interested in subspaces which are

extremely sensitive to the action of the Fourier transform. We make

this precise in the following definition.

Definition 3.19. We say that a subspace W of L2(Rn) is ultravariant

if the conditions f ∈ W,Ff ∈ W imply f = 0.
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A priori it is not clear if there is any ultravariant subspace of L2(Rn)

but in this section we show that there are many such subspaces.

Our first example of an ultravariant subspace is the Paley-Wiener

space defined as follows. For each a > 0 let PWa(Rn) stand for the

subspace of L2(Rn) consisting of functions having entire extensions to

Cn and satisfying ∫
Rn
|f(x+ iy)|2dx ≤ Ce4πa|y|

for all y ∈ Rn. We define PW (Rn) = ∪a>0PWa(Rn) and call it the

Paley-Wiener space. The space PW (Rn) is not empty since any f ∈
L2(Rn) whose Fourier tranform is compactly supported belongs to the

Paley-Wiener space. To see this, suppose Ff vanishes for |ξ| > a and

consider the inversion formula

f(x) =

∫
|ξ|≤a
Ff(ξ)e2πix·ξdξ.

It is clear then that the prescription

f(x+ iy) =

∫
|ξ|≤a
Ff(ξ)e2πi(x+iy)·ξdξ

defines and entire function and by Plancherel we also have∫
Rn
|f(x+ iy)|2dx ≤ Ce4πa|y|.

We show below that the converse is also true.

Theorem 3.20. An L2 function f belongs to PWa(Rn) if and only if

Ff is supported in {ξ : |ξ| ≤ a}.

Proof. It is enough to show that Ff is compactly supported in {ξ :

|ξ| ≤ a} whenever f ∈ PWa(Rn) since the converse has been already

proved. First we claim that PW (Rn) ⊂ ∩t>0Bt(Rn). To see this let

f ∈ PWa(Rn) and consider∫
Rn

∫
Rn
|f(x+ iy)|2pt/2(y)dxdy ≤ Ct−

n
2

∫
Rn
e4πa|y|e−

π
t
|y|2dy.

A simple calculation shows that∫
Rn

∫
Rn
|f(x+ iy)|2pt/2(y)dxdy ≤ C(a2t)

n
2 e4πa

2t.
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This proves our claim. In view of Theorem 2.5 we get gt ∈ L2(Rn) such

that f = gt ∗ pt and∫
Rn
|gt(x)|2dx = C

∫
Rn

∫
Rn
|f(x+ iy)|2pt/2(y)dxdy.

For each δ > 0 consider∫
|ξ|>a+δ

|f̂(ξ)|2dξ ≤ e−4πt(a+δ)
2

∫
Rn
|f̂(ξ)|2e4πt|ξ|2dξ.

As f = gt ∗ pt the last integral is equal to∫
Rn
|gt(x)|2dx = C

∫
Rn

∫
Rn
|f(x+ iy)|2pt/2(y)dxdy.

This along with our earlier estimate gives∫
|ξ|>a+δ

|f̂(ξ)|2dξ ≤ C(a2t)
n
2 e−4πt(a+δ)

2

e4πta
2

.

Letting t go to infinity we conclude that f̂ vanishes for |ξ| > a + δ.

Since δ is arbitrary we see that f̂ is supported in |ξ| ≤ a. �

Theorem 3.21. The Paley-Wiener space PW (Rn) is ultravariant.

The thorem follows immediately from the Paley-Wiener theorem. If

f ∈ PW (Rn) then f̂ is compactly supported and hence cannot have

an entire extension unless f = 0.

The Paley-Wiener space is strictly contained in ∩t>0Bt(Rn). It turns

out that the bigger space ∩t>0Bt(Rn) is also ultravariant. Even more

surprising is the following result. Note that the heat kernel ps ∈ Bt(Rn)

only for t < s since

Fps(x) = e−2πs|x|
2

= (2s)−
n
2 p 1

4s
(x).

It is also clear that Fps ∈ Bt(Rn) only for t < 1
4s
. Therefore, if 0 <

t < 1/2 then for any s satisfying t < s < 1/4t the function ps and Fps
both belong to Bt(Rn). This means that for such t the space Bt(Rn) is

not ultravariant. But the behaviour is different for other values of t.

Theorem 3.22. The Bergman space Bt(Rn) is ultravariant for all t ≥
1/2.
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This is a very special case of a theorem of Cowling and Price which is

viewed as an uncertainty principle for the Fourier transform. There is

a more general theorem due to Bonami et al from which Cowling-Price

theorem can be deduced. We just state the result without proof.

Theorem 3.23. The only function f ∈ L2(Rn) for which∫
Rn

∫
Rn
|f(x)||Ff(y)|e2π|x·y|dxdy <∞

is the trivial function f = 0.

In the one dimensional case this result is due to Beurling. Let us use

this to prove the ultravariance of Bt(Rn) for t > 1/2. If both f and Ff
are in Bt(Rn) we have ∫

Rn
|g(x)|2e4πt|x|2dx <∞

for g = f as well as for g = Ff. It is then easy to check that the

hypothesis of Beurling’s theorem is satisfied.

Another family of ultravariant subspaces is provided by the Hardy

classes. For t > 0 we define Ht(Rn) to be the subspace of functions

satisfying the estimate |f(x)| ≤ Cp(x)e−πt|x|
2

for some polynomial p.

Theorem 3.24. The Hardy class Ht(Rn) is ultravariant for all t > 1.

Since the Hermite functions Φα ∈ Ht(Rn) for all t ≤ 1 it follows that

Ht(Rn) is not ultravariant for t ≤ 1. We do not know if it is invariant

or not. The above theorem follows from Hardy’s uncertainty principle

which we proved in the one dimensional case earlier. Here we prove it

on Rn in a slightly stronger form which is needed for the proof of the

above theorem.

Theorem 3.25. Let f ∈ L2(Rn) satisfy the estimates

|f(x)| ≤ Cp(x)e−πt|x|
2

, |Ff(y)| ≤ Cq(y)e−πs|x|
2

for some s, t > 0 and p, q polynomials. Then f = 0 whenever st > 1

and f(x) = Cp(x)e−πt|x|
2

when st = 1.
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Proof. First we consider the case st > 1 in one dimension. We can

choose ε, δ > 0 such that (s−δ)(t− ε) = 1. Then we have the estimates

|f(x)| ≤ Cεe
−π(t−ε)x2 , |Ff(y)| ≤ Cδe

−π(s−δ)y2 .

By the previous theorem we conclude that f(x) = Ce−π(t−ε)x
2
. But this

cannot satisfy the hypothesis unless C = 0 proving that f = 0.

To prove the theorem in n dimensions, we fix a vector ω ∈ Sn−1 and

consider the function defined on R by

fω(v) =

∫
Rn−1

f(u⊕ vω)du.

Then it is easy to see that∫
R
fω(v)e−2πivrdv = f̂(rω).

Thus the function fω and its Fourier transform satisfy the hypothesis

with st > 1 and hence f̂(rω) = 0. As this is true for all ω we conclude

that f = 0. To prove the equality case st = 1 with polynomial factors,

again we need to consider the one dimensional case. The proof of

Theorem can be modified to take care of this case. The details are left

to the reader. �


