
Chapter 1

The real number system

1.1 The field of rational numbers

We consider the set N0 = {1, 2, · · · } consisting of all natural numbers
equipped with the usual addition and multiplication. We introduce a new
symbol 0, called zero, and consider

N = {0, 1, 2, · · · }.

We define m + 0 = m, m · 0 = 0 for any m ∈ N. The equation x + m =
0, m ∈ N,m 6= 0 has no solution in N. To be able to solve this equation
we introduce negative integers −1,−2,−3, · · · etc., with the property that
m+ (−m) = 0 and consider

Z = {0,±1,±2, · · · }.

Elements of Z are called integers and we note that with respect to addition
Z is a group in the sense that (i) m+ n ∈ Z for all m,n ∈ Z (ii) m+ 0 = m
for all m ∈ Z and (iii) for any m ∈ Z, m + (−m) = 0. We also note that
m(n + p) = mn + mp for m,n, p ∈ Z and m · 1 = m. So with addition and
multiplication Z forms what is called a ring. We refer to Z as the ring of
integers.

In Z we would like to solve the equation mx + n = 0 but a solution
exists if and only if n is a multiple of m, meaning there exists p ∈ Z such
that n = mp in which case x = −p is the unique solution. So we look for
solutions of the above equation in a number system which properly contains
Z.

To this end let us consider the cartesian product G = Z×Z defined to be
the set of all ordered pairs (m,n),m, n ∈ Z. We remark that (m,n) = (p, q)
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if and only if m = p and n = q. G becomes a ring if we define (m,n)+(p, q) =
(m+ p, n+ q) and (m,n)(p, q) = (mp, nq). In this group (1, 1) serves as the
multiplicative identity as can be seen from the definition.

The equation mx + n = 0 now takes the form (m,n)(x, y) + (p, q) = 0
which amounts to solve the equation (m,n)(x, y) = (1, 1). It is easy to see
that this can be solved in G only when (m,n) is one of (1, 1), (1,−1), (−1, 1)
or (−1,−1). (It is also clear that the above cannot be solved if either m = 0
or n = 0). So the passage to G from Z doesn’t seem to help much.

From G let us remove all elements (m,n) where n is zero. Let
G0 = {(m,n) ∈ G : n 6= 0} and consider the diagonal

I = {(p, p) ∈ G0}.

Let us weaken the equation (m,n)(x, y) = (1, 1) by demanding only that
(m,n)(x, y) ∈ I. This problem clearly has a solution (x, y) = (n,m) since
(m,n)(n,m) = (mn, nm) ∈ I.

In G0 let us introduce a relation ∼ as follows. We say that (m,n) ∼ (p, q)
if and only if mq = np. Then it can be easily checked that (i) (m,n) ∼
(m,n) (reflexive) (ii) (m,n) ∼ (p, q) implies (p, q) ∼ (m,n)(symmetric) (iii)
(m,n) ∼ (p, q) and (p, q) ∼ (r, s) implies (m,n) ∼ (r, s) (transitive). Such a
relation is called an equivalence relation.

Using ∼ we can decompose G0 into a disjoint union of subsets. For
(m,n) ∈ G0 define [m,n] = {(p, q) ∈ G0 : (m,n) ∼ (p, q)}. Then [m,n] =
[p, q] whenever (m,n) ∼ (p, q) and [m,n] ∩ [p, q] = ∅ if (m,n) is not related
to (p, q). Further G0 =

⋃
[m,n]. Note that I = [1, 1] in our notation.

Suppose now that (m,n)(p, q) ∈ I. If (m′, n′) ∼ (m,n) and (p′, q′) ∼
(p, q) we claim that (m′, n′)(p′, q′) ∈ I also. To see this we are given mp =
nq,m′n = n′m and p′q = q′p. Need to show that m′p′ = n′q′. Look at

m′p′nq = m′np′q = n′mpq′

which gives m′p′ = n′q′ since mp = nq. Hence the property (m,n)(p, q) ∈ I
is indeed a property of the equivalence classes [m,n] and [p, q] rather than
the individual representatives.

Let us therefore try to make G̃ = {[m,n] : (m,n) ∈ G0} into a number
system in which we can solve gx+ h = 0. Let us define

[m,n][p, q] = [mp, nq].

It is now an easy matter to check that if (m′, n′) ∈ [m,n] and (p′, q′) ∈ [p, q]
then

[mp, nq] = [m′p′, n′q′]



1.2 The set of rationals as a metric space 3

which means our definition is meaningful. But we have to be careful with
the addition since the obvious definition

[m,n] + [p, q] = [m+ p, n+ q]

is not ’well defined’ i.e., this definition is not independent of the representa-
tives from [m,n] and [p, q]. Instead if we define

[m,n] + [p, q] = [mq + np, nq]

then this becomes a well defined addition and G̃ becomes a ring.

Moreover, for any [m,n] ∈ G̃ we have [m,n] + [0, 1] = [m,n] and for
[m,n] ∈ G̃, [m,n] 6= [0, 1], [m,n][n,m] = [1, 1]. Thus [0, 1] is the additive
identity and [1, 1] is the multiplicative identity. And in G̃ every nonzero
element has a multiplicative inverse. Such a system is called a field. We call
G̃ the field of rationals.

Note that the map ϕ : Z→ G̃ defined by ϕ(m) = [m, 1] satisfies

(i) ϕ(m+ n) = ϕ(m) + ϕ(n)

(ii) ϕ(mn) = ϕ(m)ϕ(n).

Under these conditions we say that ϕ is a homomorphism of Z into G̃ and
we identify ϕ(Z) with Z and say that Z is a subring of G̃.

Notation: It is customary to denote G̃ by Q and [m,n] by m
n . When there

is no confusion we will use this traditional notation.

1.2 The set of rationals as a metric space

We have seen that in Q we can solve all the first order equations ax+b = 0
where a, b ∈ Q. However, the same is not true for second order equations,
e.g. the equation x2 = 3 has no solution in Q. We may introduce a symbol,
say
√

3, which is defined to be a solution of the above equation and enlarge
Q into a bigger field, call it Q(

√
3), in which the above equation x2 = 3

can be solved. One way to do this to just define Q(
√

3) to be the set of all
formal symbols of the form a+ b

√
3 where a, b ∈ Q and let

(a+ b
√

3) + (a′ + b′
√

3) = (a+ a′) + (b+ b′)
√

3

and (a+ b
√

3)(a′ + b′
√

3) = (aa′ + 3bb′) + (ab′ + ba′)b
√

3.

One can check that Q ⊂ Q(
√

3) and Q(
√

3) is indeed a field.
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But in Q(
√

3) there is no guarantee that the equation x2 = 2 or x2 = 5
has a solution. We can of course define symbols

√
2,
√

3,
√

5 and so on and
keep on extending Q so that x2 = 2, x2 = 3, x2 = 5 etc will have solutions.
But then there is no end to such a procedure. Even if we achieve a field
where all second order equations can be solved, there is no way we can
rest assured that higher order equations also will have solutions. Instead of
proceeding as above with one step at a time (which algebraists love to do)
we would like to get an extension of Q in which all polynomial equations
can be solved.

In order to do this we make Q into a ’metric’ space(whatever it means).
We have to begin by defining positive and negative integers - we call n ∈ Z
positive and write n > 0 if n ∈ {1, 2, · · · }; we call n negative and write
n < 0 if −n ∈ {1, 2, · · · }. The inequality n ≥ 0(n ≤ 0) stands for n > 0 or
n = 0(resp. n < 0 or n = 0). We extend this notion to elements of Q by
defining > and < as follows:

We say that r ∈ Q is positive, r > 0 if mn > 0 where r = [m,n]; r < 0 if
mn < 0. For r, s ∈ Q we say r ≥ s whenever r− s ≥ 0 etc. It can be verified
that given r ∈ Q, r 6= 0 either r > 0 or r < 0 holds.

We then define |r| for r ∈ Q by setting |r| = r when r ≥ 0 and |r| = −r
when r < 0. In terms of the modulus function (or absolute value) | · | we
define a distance function, also called metric, as follows: d : Q × Q → Q is
defined by d(r, s) = |r − s|. It is immediate that

(i) d(r, s) ≥ 0, d(r, s) = 0 if and only if r = s

(ii) d(r, s) = d(s, r)

(iii) d(r, s) ≤ d(r, t) + d(t, s).

The third one is called the triangle inequality.

The set Q equipped with d is an example of a metric space. (Later we
will deal with several metric spaces.)

Once we have a metric which measures the distance between members of
Q we can discuss convergence. First let us recall the definition of a sequence
and set up notation. By a sequence we mean a function, say, ϕ : N → Q.
Traditionally we write a sequence as (an) or (an)∞n=0 where an = ϕ(n). In
the notation the order is given importance. The sequence (an) is not the set
{an : n ∈ N}. We can now define the convergence of a sequence (an) in Q.

We say that (an) converges to a ∈ Q if the following happens: For every
p ∈ N0, however large it is, we can find n (depending on p) such that
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d(aj , a) < 1
p for all j ≥ n.(i.e., aj ’s get arbitrarily close to a, measuring the

distance in terms of d).

If the above happens we write (an)→ a. It is obvious from the definition
that (an) → a iff the sequence (an − a) → 0. It is equally obvious that
(an) → a and (bn) → b implies (an + bn) → a + b. With little bit of work
we can show that (anbn) → ab. For this we need the fact that (an) → a
implies there exists M ∈ Q such that |an| ≤ M for all n - we say that (an)
is bounded. This means every convergent sequence is bounded - but the
converse is not true as the example (an) with an = (−1)n shows.(Amuse
yourself by trying to prove the convergence of this sequence.)

Convergent sequences in Q enjoy another important property. Suppose
(an) → a. If p ∈ N we can choose N such that d(an, a) < 1

2p whenever
n ≥ N. By the triangle inequality

d(an, am) ≤ d(an, a) + d(a, am) <
1

p

for all n,m ≥ N. This warrants a definition as it is very important.

A sequence (an) is said to be Cauchy if given any p ∈ N there exists
N ∈ N such that d(an, am) < 1

p for all n,m ≥ N.
Roughly speaking, as we go along the sequence the distance between

adjacent terms becomes smaller and smaller.

A natural question arises now: Is it true that every Cauchy sequence (an)
in Q converges to some a ∈ Q? (If so we would be saying Q is complete).
Unfortunately it is not true.

Proposition 1.2.1. Q is not complete, i.e., there exist Cauchy sequences
which do not converge in Q.

We only need to produce one example of a Cauchy sequence which does
not converge in Q. Let us take

an = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

where n! = 1 · 2 · · ·n. Note that n! > 2n−1 or 1
n! < (1

2)n−1 for any n ≥ 1. In
order to show that (an) is Cauchy we need the above estimate and also the
formula

1 + a+ a2 + · · · am = (1− am+1)(1− a)−1

for any a ∈ Q, a 6= 1. This can be proved by expanding (1−a)( 1+ a+ a2+ · · · am).
Now when n > m ≥ 1 we have

0 ≤ an − am =
1

(m+ 1)!
+

1

(m+ 2)!
+ · · ·+ 1

n!
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which by the estimate n! > 2n−1 gives

an − am ≤
1

2m
+

1

2m+1
+ · · ·+ 1

2n−1

the right hand side of which simplifies to

1

2m
·
(

1−
(

1

2

)n−m)(
1−

1

2

)−1

which is strictly less than 2−m+1. Hence

an − am < 2−m+1, n > m.

We only need to observe that given p ∈ N we can always choose N such that
1
p > 2−m+1 for m ≥ N.( In fact N = p+ 1 will work. Why?)

It remains to show that (an) does not converge in Q. We prove this by
contradiction. Suppose (an)→ a for some a ∈ Q. As an > 0 is an increasing
sequence, it follows that a > 0. Assume a = p

q where p, q ∈ N, q 6= 0. As
the constant sequence (q!) converges to q! we see that (q!an)→ p(q− 1)!, an
integer. But q!an = m+ bn where

m = q! + q! +
q!

2!
+ · · ·+ q!

q!
∈ N

and bn =
1

q + 1
+

1

(q + 1)(q + 2)
+ · · ·+ 1

(q + 1) · · · (n)
.

On the one hand (bn) = (q!an − m) → an integer. On the other hand
bn <

1
2 + 1

22
+ · · ·+ 1

2n−q < 1. This contradiction proves the claim.

1.3 The system of real numbers

We have seen that the metric space (Q, d) is not complete - there are
Cauchy sequences in Q which do not converge. We now seek to complete Q
- that is to find a complete metric space which contains Q as a proper sub-
space. This is achieved very easily by a general procedure called completion
which we describe now.

Consider the set of all Cauchy sequences (an) in Q. We define an equiv-
alence relation ∼ by saying (an) ∼ (bn) if the sequence (an − bn) converges
to 0 in Q. It is then easy to see that ∼ is an equivalence relation and hence
partitions the set of all Cauchy sequences into disjoint equivalence classes.
Let R stand for this set of equivalence classes of Cauchy sequences. Thus
every element A ∈ R is an equivalence class of Cauchy sequences.
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For every r ∈ Q, the constant sequence (r) is obviously Cauchy which
clearly converges to r. Let r̃ denote the equivalence class containing (r) and
denote by Q̃ the set of all such r̃, r ∈ Q. Then we can identify Q with Q̃
and Q̃ ⊂ R. We can now define the operations addition and multiplication
as follows: if A,B ∈ R and if (an) ∈ A and (bn) ∈ B define their sum
A + B to be the equivalence class containing (an + bn) and AB that con-
taining (anbn). One needs to verify that this definition is independent of the
sequences (an) ∈ A and (bn) ∈ B which can be easily checked. Note that 0̃
corresponding to 0 ∈ Q is the additive identity and 1̃ containing (1) is the
multiplicative identity. The map r 7→ r̃ is a homomorphism from Q into Q̃.

Now we want to define a metric in R; given A,B ∈ R we want to define
d̃(A,B). If (an) ∈ A and (bn) ∈ B then it is clear that (|an − bn|) is Cauchy
and hence defines an equivalence class in R. We simply define d̃(A,B) to
be the equivalence class containing (|an − bn|). Again one has to verify that
d̃ is well defined. Suppose (a′n) ∈ A and (b′n) ∈ B so that (an) ∼ (a′n)
and (bn) ∼ (b′n). Then |an − bn| ≤ |an − a′n| + |a′n − b′n| + |b′n − bn| so that
|an − bn| − |a′n − b′n| ≤ |an − a′n|+ |bn − b′n|. Changing the roles of (an), (bn)
and (a′n), (b′n) we also get∣∣|an − bn| − |a′n − b′n|∣∣ ≤ |an − a′n|+ |bn − b′n|.
This shows that (|an − bn|) ∼ (|a′n − b′n|) and hence d̃ is well defined.

The order relation ≥ can also be extended from Q into R in a natural
way. We say that (an) > (bn) if for some positive integer p we have an ≥
bn + 1

p for all but finitely many values of n. With this definition we say
A > B, A,B ∈ R if there exist (an) ∈ A and (bn) ∈ B such that (an) > (bn).
It then follows that A > B if and only if (an) > (bn) for any (an) ∈ A and
(bn) ∈ B. We say that A ≥ B if either A = B or A > B. Clearly d̃(A,B) ≥ 0̃
and d̃(A,B) = 0̃ if and only if A = B. Using the definition we can check
that

d̃(A,B) ≤ d̃(A,C) + d̃(C,B)

for all A,B,C ∈ R. This makes (R, d̃) into a metric space. Note that for
r, s ∈ Q

d(r, s) = d̃(r̃, s̃).

Thus d̃ can be thought of as an extension of d to the bigger space R.
Convergence in R is now defined using the metric d̃.

Theorem 1.3.1. R equipped with d̃ is a complete metric space.

Let us recall the definition of convergence of sequences in R. We say
that An ∈ R converges to A ∈ R if given any r̃ ∈ R, r ∈ Q, r > 0 there exists
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N ∈ N such that

d̃(An, A) < r̃, n ≥ N.

Cauchy sequences are defined similarly.

Let Q̃ be the image of Q in R under the map r 7→ r̃. We observe that Q̃
is dense in R. To see this, let (an) ∈ A and choose N large enough so that
|an−am| < 1

p for all m,n ≥ N where p ∈ N is given. Now consider d̃(A, ãN ).

As |an − aN | < 1
p for n ≥ N it follows that d̃(A, ãN ) < 1

p . As p is arbitrary,

this proves the density of Q̃.
Suppose now (An) is a Cauchy sequence in R. For each n, let us choose

Bn ∈ Q̃ so that d̃(An, Bn) < 1
n . Let bn ∈ Q be such that Bn = b̃n =

(bn, bn, · · · ). Note that

|bn − bm| = d̃(Bn, Bm) ≤ 1

n
+ d̃(An, Am) +

1

m
.

As (An) is Cauchy, this means that (bn) is a Cauchy sequence of rationals.
Let B be the equivalence class which contains (bn). Then

d̃(Am, B) ≤ d̃(Am, Bm) + d̃(Bm, B) ≤ 1

m
+ d̃(Bm, B).

But then

d̃(Bm, B) = lim
n→∞

|bm − bn|

which can be made arbitrarily small by choosingm large. Hence d̃(Am, B)→0
as m→∞ and therefore, R is complete.

In R we have defined addition and multiplication which makes it a ring.
It is natural to ask whether R is also a field. That is given A ∈ R, A 6= 0
does there exist B ∈ R such that AB = 1̃. Let A ∈ R, A 6= 0 and take any
(an) ∈ A. Then (an) cannot converge to 0; otherwise (an) ∈ 0̃ and hence
A = 0. Therefore, there exists p ∈ N such that |an| > 1

p for all values of n,

save for finitely many. As (an) is Cauchy, this is possible only if an ≥ 1
p(or

an ≤ −1
p) except for finitely many values of n. That is either A > 0 or

A < 0. Assume an ≥ 1
p , n ≥ n0. Then the sequence (1, 1, · · · , 1, a−1

n0+1, · · · )
is Cauchy. Take A−1 to be the equivalence class containing this. It is easy
to check AA−1 = 1̃.

Theorem 1.3.2. R is a field which contains Q̃ as a dense subfield.
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The construction of R was motivated by two reasons: (i) (Q, d) is not
complete as a metric space (ii) simple equations like x2 = 2 has no solution
in Q. We have achieved completeness by defining R suitably. But now we
may ask if equations like x2 = a has a solution in R. Our definition of
multiplication in R (which extends the definition from Q) shows that A2 ≥ 0
for any A ∈ R, hence the equation x2 = a has no solution when a < 0. But
for a > 0 we do have.

Theorem 1.3.3. Let a ∈ R, a ≥ 0. Then the equation x2 = a has a solution
in R.

Proof. We can assume a > 0 since x2 = 0 is satisfied by A = 0. When
a = m2 ∈ N, x = ±m are solutions. So we can assume, dividing a by m2,
m large if necessary, that 0 < a < 1. Since Q̃ is dense in R choose a rational
a1, such that a < a1 < 1. Define

an+1 =
1

2

(
an +

a

an

)
.

Using induction we can easily verify that a < an < 1 for all n. If we can
show that (an) converges to A ∈ R then the above will lead to

A =
1

2

(
A+

a

A

)
or A2 = a

and the proof will be complete.

So we have a sequence (an) with a < an < 1 but this boundedness is not
enough to guarantee convergence as we have seen even in Q. But we can say
something more about (an) namely, (an) is monotone decreasing: an+1 < an
for all n. To see this

4a2
n+1 = a2

n +
a2

a2
n

+ 2a > 4a

since x2 + y2 ≥ 2xy for any x, y ∈ R with equality only when x = y. So we
have a2

n+1 > a and using this

an+1 =
1

2an
(a2
n + a) ≤ 1

2an
(a2
n + a2

n) = an.

Thus, (an) is a monotone decreasing sequence and a < an < 1 for all n. This
forces (an) to be Cauchy (verify!) and hence (an) converges to some A ∈ R.
This completes the proof.
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In the above proof we have been fortunate to prove that (an) is monotone.
But if we only know (an) is bounded, we may not be able to prove that (an)
converges. But something weaker is true, which is quite useful in several
situations and is one of the important properties of the real number system.

Theorem 1.3.4. Every bounded sequence (an) in R has a convergent sub-
sequence.

First let us recall the definition of a subsequence. Let (an) be a sequence
and let ϕ : N → R be the function such that ϕ(n) = an. If ψ : N → N
is a strictly increasing function (i.e., ψ(k) < ψ(j) for k < j) the sequence
ϕ ◦ ψ : N → R is called a subsequence of (an). We usually denote the
subsequence by (ank), n1 < n2 < · · · .

In order to prove the theorem it is enough to show that (an) has a
monotonic (either increasing or decreasing) subsequence. The boundedness
of (an) will then force the subsequence to be Cauchy and the completeness
of R proves the theorem. Therefore, it remains to prove the following:

Proposition 1.3.5. Every sequence (an) in R has a monotone subsequence.

Proof. If the given sequence (an) has an increasing subsequence then there
is nothing to prove, so let us assume (an) has no such subsequence. We then
prove that (an) has a decreasing subsequence.

There is n1 such that an1 > an for all n ≥ 1 for otherwise we can extract
an increasing subsequence. Then choose n2 such that an2 < an1 , n2 > n1

and define ank inductively. Clearly, (ank) is a decreasing subsequence of
(an).

When we undertake the study of function spaces defined on R, the set
of all polynomials is going to play an important role - actually, they will
play a role similar to that of Q in the construction of real numbers. So, it is
important to study some properties of polynomials. In R, even the simplest
quadratic x2 + 1 = 0 has no solution. So we now proceed to extend the
real number system into something bigger where we can solve all polynomial
equations - equations of the form p(x) = 0 where p(x) = a0+a1x+· · ·+ anx

n

are polynomials. This leads us to the field of complex numbers and the
fundamental theorem of algebra!
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1.4 The field of complex numbers

Within the field of real numbers we are not able to solve such simple
equations as x2 + 1 = 0. Our aim now is to enlarge R defining the field of
complex numbers in which not only the equation x2 + 1 = 0 but any general
polynomial equation p(x) = 0 can be solved.

To this end let M2(R) stand for the set of all 2 × 2 matrices with real
entries. By this we mean the following: every element A ∈ M2(R) is

a symbol of the form A =

(
a b
c d

)
where a, b, c, d ∈ R. We can make

M2(R) into a ring by defining addition and multiplication as follows. Let

Aj =

(
aj bj
cj dj

)
, j = 1, 2. Define

A1 +A2 =

(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)
,

A1A2 =

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.

Then it is easy to check that A + 0 = 0 + A = A and AI = IA = A where

0 =

(
0 0
0 0

)
and I =

(
1 0
0 1

)
.

However, M2(R) is not a field. If A ∈ M2(R) and A 6= 0 then it is not
true that there exists B ∈ M2(R) such that AB = BA = I. To see this let
us introduce the concept of determinant. Define detA = (a1d1 − b1c1) if

A =

(
a1 b1
c1 d1

)
. Then by routine calculation one proves that det(AB)

= detA · detB. Once we have this it is easy to see that there is a neces-
sary condition for the existence of B with AB = I. Indeed, AB = I gives
detA · detB = det I = 1 which forces detA 6= 0. It can be shown that this
necessary condition is also sufficient: i.e., A has a multiplicative inverse iff
detA 6= 0.

Let GL(2,R) stand for all A ∈ M2(R) with detA 6= 0 so that GL(2,R)
becomes a group under multiplication. It is interesting to observe that this
group is nonabelian/ noncommutative meaning AB=BA need not be true
in general. Though GL(2,R) is a group under multiplication, it does not
contain 0, the additive inverse; it is not true that GL(2,R) is closed under
addition.

We therefore look for a subgroup of GL(2,R) which is closed under
addition so that when augmented with 0 it will form a field. To achieve this
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we consider C to be the set of all A ∈ GL(2,R) of the form

(
x y
−y x

)
.

The condition detA 6= 0 translates into x2 + y2 6= 0, i.e., either x or y is

nonzero. Now if A′ =

(
x′ y′

−y′ x′

)
then

A+A′ =

(
x+ x′ y + y′

−(y + y′) x+ x′

)
∈ C

AA′ =

(
xx′ − yy′ xy′ + yx′

−(xy′ + yx′) xx′ − yy′
)
∈ C.

This shows that C is a field, called the field of complex numbers.

Let us write J =

(
0 1
−1 0

)
so that any A ∈ C can be written in the

form
A = xI + yJ

where the scalar multiplication of a matrix B by a real λ ∈ R is defined by

λB =

(
λa λb
λc λd

)
if B =

(
a b
c d

)
.

The set {xI : x ∈ R} sits inside C as a subfield which is isomorphic to R.
We can therefore think of C as an extension of R, the field of real numbers.

In C the matrix J has the interesting property J2 = −I and hence solves
J2 + I = 0. Thus we have achieved one of our goals - being able to solve
x2 + 1 = 0.

We now proceed to show that C can be made into a complete metric
space. Let us denote the elements of C by z, w etc. If z = xI+ yJ we define
|z| by

|z| = (x2 + y2)
1
2 .

Now that (x2 + y2) > 0 and hence there exist real numbers A such that
A2 = (x2 + y2). There are exactly two solutions of this - one positive and
one negative. In the above we take the positive solution.

We claim that |z| satisfies the property

|z + w| ≤ |z|+ |w|, z, w ∈ C.

Once this is proved, the function d defined by d(z, w) = |z−w| gives a metric
on C.
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Let z = xI + yJ and w = uI + vJ so that |z|2 = x2 + y2, |w| = u2 + v2

and we have to show that

((x+ u)2 + (y + v)2)
1
2 ≤ (x2 + y2)

1
2 + (u2 + v2)

1
2 .

Expanding out

(x+ u)2 + (y + v)2 = (x2 + y2) + (u2 + v2) + 2(xu+ yv).

If we can show that

|(xu+ yv)| ≤ (x2 + y2)
1
2 (u2 + v2)

1
2

then

(x+ u)2 + (y + v)2) ≤ (x2 + y2) + (u2 + v2) + 2(x2 + y2)
1
2 (u2 + v2)

1
2

or
|z + w|2 ≤ |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2

which proves our claim. So it remains to prove

Lemma 1.4.1. (Cauchy-Schwarz inequality) For z = xI + yJ,w = uI + vJ
in C,

|xu+ yv| ≤ |z||w|.

We remark that an easy calculation reveals

(xI + yJ)(uI − vJ) = (xu+ yv)I + (uy − xv)J.

Let us define z = (xI − yJ) whenever z = (xI + yJ) so that

zw = (xu+ yv)I + (uy − xv)J.

By defining Re(z) = x and Im(z) = y we have

Re(zw) = (xu+ yv), Im(zw) = (uy − vx)

and the Cauchy-Schwarz inequality takes the form

|Re(zw)| ≤ |z||w|.

We now proceed to the proof of the lemma.
For t ∈ R consider |z + tw|:

|z + tw|2 = (x+ tu)2 + (y + tv)2
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which after simplification gives

at2 + 2bt+ c ≥ 0

where a = |w|2, b = Re(zw), c = |z|2. Now

at2 + 2bt+ c = a(t+
b

a
)2 + c− b2

a
≥ 0

As this is true for all t, taking t = − b
a we get c − b2

a ≥ 0 or b2 ≤ ac which
proves the lemma.

We can now prove

Theorem 1.4.2. C equipped with the metric d is a complete metric space.

Proof. Let (zn) ∈ C be a Cauchy sequence. Writing zn = xnI+ynJ, xn, yn ∈R
we see that (xn) and (yn) are Cauchy sequences in R. Hence there exist
x, y ∈R such that (xn)→ x and (yn)→ y. Then clearly (zn)→ (xI+yJ).

From now on we use a simplified notation. In place of xI let us write x;
denote J by i so that i2 = −1. Write z = x+ iy in place of xI + yJ always
remembering that (x+ iy) stands for the matrix (xI + yJ).

1.5 The fundamental theorem of algebra

We consider polynomials p(z) with coefficients from C :

p(z) = a0 + a1z + · · ·+ anz
n, aj ∈ C.

We say that p(z) is of degree n if an 6= 0. Our aim is to prove the following
result which is known as the fundamental theorem of algebra.

Theorem 1.5.1. For every polynomial p(z) as above, the equation p(z) = 0
has at least one solution in C.

We prove this theorem in two steps. First we show that there exists
a ∈ C such that |p(z)| ≥ |p(a)| for all z ∈ C i.e., the minimum value of |p(z)|
is attained at some a ∈ C. Then we show that p(a) = 0. This will then prove
the theorem.

Let BR(0) = {z ∈ C : |z| ≤ R} which is called the closed disc of radius
R centred at 0 (here R ∈ R, R > 0). As 0 ∈ BR(0) and p(0) = a0

min
z∈BR(0)

|p(z)| ≤ |a0|.
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Suppose we can choose R large enough so that |p(z)| ≥ |a0| for all z not in
BR(0), then the minimum value of |p(z)| can occur only in BR(0). Our first
claim that there exists a ∈ C with |p(a)| ≤ |p(z)| for all z ∈ C will be proved
in two sets.

Lemma 1.5.2. There exists R > 0 such that |p(z)| ≥ |a0| for all z with
|z| > R.

Lemma 1.5.3. In BR(0), |p(z)| attains its minimum, that is there exists
a ∈ BR(0) such that |p(a)| ≤ |p(z)| for all z ∈ BR(0).

The first lemma is easy to prove. We need only to make precise the
intuitive idea that |p(z)| behaves like |z|n for large values of |z|. Defining
bj = aja

−1
n , j = 0, 1, 2, · · · , n,

|p(z)| = |an||zn + bn−1z
n−1 + · · ·+ b0|.

Using triangle inequality,

|p(z)| ≥ |an|(|z|n − |bn−1z
n−1 + · · ·+ b0|).

Again by triangle inequality,

|bn−1z
n−1 + · · ·+ b0| ≤

n−1∑
j=0

|bj ||z|j ≤ β
|z|n − 1

|z| − 1

where β = max
0≤j≤n−1

|bj |. Thus

|p(z)| ≥ |an|
(
|z|n − β|z|n

|z| − 1
+

β

|z| − 1

)
≥ |an|

(
1− β

|z| − 1

)
|z|n

provided |z| > 1. Thus we have

|p(z)| ≥ 1

2
|an||z|n

whenever (1 − β
|z|−1) > 1

2 or |z| > 2β + 1. We can achieve |p(z)| ≥ |a0| by

choosing z such that |z| > 2β + 1 and |z|n > 2|a0|
|an| . That we can choose R

satisfying R > 2β + 1 and Rn > 2|a0|
|an| follows from the fact that for |z| > 1

the set {|z|n} is unbounded i.e., given any M ∈ N we can choose ζ with
|ζ| > 1 such that |ζ|n > M. This proves Lemma 1.5.2.
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Lemma 1.5.3 is not so easy to prove. We need some preparation. So, we
take a digression, make a couple of definitions, prove one or two important
results concerning subsets of R and return to Lemma 1.5.3.

Let A ⊆ R be a nonempty set. We say that A is bounded above (below)
if there exists C (c) such that a ≤ C (a ≥ c) for all a ∈ A. Any such C (c)
is called an upper bound (lower bound) for A. We can ask if A has a least
upper bound (or greatest lower bound). If such a thing exists we call it supA
(or inf A) as the case may be. An important property of the real number
system is that sup (inf) exists for sets bounded above (below). When exist
they are obviously unique!

Theorem 1.5.4. Every nonempty set A ⊆ R which is bounded above (below)
has a supremum (infimum).

Proof. Assume that A is bounded above, the bounded below case can be
handled similarly. Let a1 be a non-upperbound and b1 be an upper bound.
Consider the interval I1 = [a1, b1] and divide it into two equal parts:
I1 = [a1,

1
2(a1 + b1)]∪ [1

2(a1 + b1), b1]. Of these choose the interval for which
the left end point is not an upper bound but the right one is an upper bound.
Call it I2 = [a2, b2]. Repeat the process choosing Ij = [aj , bj ] ⊂ Ij−1 such
that aj is not an upper bound of A and bj is an upper bound. Note that
(aj) is increasing and (bj) is decreasing. As both sequences are bounded
they converge. Let (aj)→ a and (bj)→ b. But (bj − aj)→ 0 which implies
a = b.

It is easy to see that this common limit is the supremum of A. Why?
Since x ≤ bj for any j and x ∈ A, we get x ≤ a for all x ∈ A. If a′ < a
then there exists j large so that a′ < aj < a but then as aj is not an upper
bound, a′ also is not an upper bound. Hence a = supA.

Corollary 1.5.5. If A is bounded above then there exists a sequence (aj) ∈ A
such that (aj)→ supA. (Similar statement holds for sets bounded below).

Let us try to prove Lemma 1.5.3 now. Let R > 1 and consider

A = {|p(z)| : z ∈ BR(0)}.

It is clear that A is bounded from below since y ≥ 0 for all y ∈ A. We can also
show that A is bounded above: there exists C > 0 such that |p(z)| ≤ CRn.
By Theorem 1.5.4, A has an infimum, i.e., there exists m ≥ 0 such that
|p(z)| ≥ m for all z ∈ BR(0) and m is the largest with this property. Lemma
1.5.3 claims that this inf is attained, i.e., there exists a ∈ BR(0) such that
|p(a)| = m.
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In view of the above Corollary we know that there exists (an) ∈ A such
that (an) → m. But then there exists zn ∈ BR(0) with an = |p(zn)| by the
definition of A. If we can show that (zn) has a subsequence (znk) converging
to some a ∈ BR(0) and that |p(znk)| → |p(a)| then we are done.

Thus we are left with proving the following two lemmas.

Lemma 1.5.6. Given a sequence (zn) ∈ BR(0) there is a subsequence (znk)
which converges to some a ∈ BR(0).

Proof. Let zn = xn+ iyn so that |xn| ≤ R and |yn| ≤ R. As {xn} is bounded
there exists a subsequence (xnk) which converges to some x ∈ R. The se-
quence (ynk) will then have a subsequence which converges to some y ∈ R.
Put together there exists a subsequence of (zn) converging to a = x + iy.
As |zn| ≤ R for all n, we get |a| ≤ R as well.

Lemma 1.5.7. Let p(z) be a polynomial. If (zn) converges to a then (p(zn))
converges to p(a).

Proof.

p(z)− p(a) =

n∑
j=0

aj(z
j − aj)

and zj−aj = (z−a)(zj−1+zj−2a+· · ·+aj−1)

as can be verified directly. Hence

p(z)− p(a) = (z − a)q(z)

where q is a polynomial of degree n−1. On the set |z−a| ≤ 1, q is bounded
and so

|p(z)− p(a)| ≤ C|z − a|, |z − a| ≤ 1.

From this follows our claim.

As ||p(z)| − |p(a)|| ≤ |p(z)− p(a)| Lemma 1.5.3 is proved completely.

The proof of Theorem 1.5.1 will be complete if we can prove

Lemma 1.5.8. Let p(z) be a polynomial and a ∈ C is such that |p(z)| ≥ |p(a)|
for all z ∈ C. Then p(a) = 0.

To prove this we proceed as follows. Writing z = z − a+ a we get

p(z) = p(z − a+ a) = A0 +A1(z − a) + · · ·+An(z − a)n
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where A0 = p(a) and An 6= 0. If Ak is the first nonzero coefficient (after A0)
we have

p(z) = A0 +Ak(z − a)k +Ak+1(z − a)k+1 + · · ·+An(z − a)n.

We can write this as

p(z) = p(a) +Ak(z − a)k +Ak(z − a)k+1Q(z)

where Q(z) =
Ak+1

Ak
+
Ak+2

Ak
(z−a)+· · ·+An

Ak
(z−a)n−k−1.

When z is close enough to a, Ak(z − a)k+1Q(z) is very small. If we can
choose z in such a way that p(a) +Ak(z − a)k is equal to (1− c)p(a) where
0 < c < 1, then for such an z, |p(z)| will be smaller than |p(a)| which will
force |p(a)| = 0.

We can arrange such a thing to happen if we can solve the equation

Ak(z − a)k = −cp(a), 0 < c < 1.

Note that when |z − a| < 1,

|Q(z)| ≤ |Ak+1|
|Ak|

+ · · ·+ |An|
|Ak|

= C (say).

Let δ be chosen so that 0 < δ < 1 and δC < 1. Then for |z − a| < δ we

have |z − a||Q(z)| < 1. Let us choose 0 < c < 1 such that c |p(a)|
|Ak| < δk. Then

any solution of Ak(z − a)k = −cp(a) will satisfy |z − a| < δ. If z is such a
solution then

p(z) = p(a)− cp(a)− cp(a)(z − a)Q(z)

which gives

|p(z)| ≤ (1− c)|p(a)|+ c|p(a)||z − a||Q(z)| < |p(a)|

leading to a contradiction.

The equation Ak(z − a)k = −cp(a) can be solved if we can solve zk = α
for any α ∈ C. Given z ∈ C we can factorise z as z = rω, where r > 0 and
ω ∈ C satisfies |ω| = 1. We only need to define r = (x2 + y2)

1
2 and ω = r−1z

where z = xI + yJ. The equation zk = α reduces to two equations: zk = |α|
and zk = |α|−1α.

The equation zk = |α| can be easily solved: Indeed, it has a real solution
as the following proposition shows.
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Proposition 1.5.9. Let k be a positive integer. For any r > 0, the equation
xk = r has a real solution.

Proof. Consider the polynomial p(x) = xk − r which satisfies p(0) < 0.
Choose b1 > 0 such that p(b1) = bk1 − r > 0. As in the proof of Theorem
1.5.4 we define nested intervals Ij+1 ⊂ Ij , Ij = [aj , bj ] with the property
that p(aj) < 0 and p(bj) > 0. (We let a1 = 0 to start with). Let a be the
common limit point of the Cauchy sequences (aj) and (bj). Clearly, p(a) = 0
or equivalently, ak = r.

Thus we are left with solving the equation zk = α, where α ∈ C, |α| = 1.
In order to solve this, we need some more preparation. Hence, we postpone
this to a later section.

1.6 R and C as topological spaces

We describe another important property for subsets of R or C. If we take
A ⊂ R or C then A becomes a metric space in its own right and so we can
ask if A is complete or not. If so then every Cauchy sequence (xn) in A will
converge to some point in A. Under these circumstances we say that A is
closed. (Imagine walking along a Cauchy sequence to get out of A).

When A is closed we say that its complement A′ is open. In otherwords,
a subset G ⊂ R or C is called open if G′ is closed. It is easy to see that G
is open if and only if the following condition is verified:

For every x ∈ G there exists δ > 0 (depending on x) such that Bδ(x) ⊂ G
where Bδ(x) = {y : |x− y| < δ}.

When considering subsets of R, Bδ(x) will be denoted by (x− δ, x+ δ).
With the above definition it is easy to prove that any union of open sets is
open; any finite intersection of open sets is open.

We have seen that any A ⊂ R or C which is bounded has the Bolzano-
Weierstrass property, viz., any sequence (xn) ⊂ A has a Cauchy subsequence
(which may or may not converge in A). If A is closed and bounded then every
sequence (xn) has a convergent subsequence (which converges in A). This
property can be characterised in another way which is very general so that
it can be used whenever we have the notion of open sets.

A family Gα, α ∈ Λ of open sets is said to be an open cover for A if
A ⊂

⋃
α∈Λ

Gα. If Λ is finite we say that Gα, α ∈ Λ is a finite cover.
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Theorem 1.6.1. (Heine-Borel) A set A ⊂ R is closed and bounded if and
only if every open cover of A has a finite subcover.

Proof. Assume first that A is closed and bounded. Assume also that A ⊂ R.
(The caseA ⊂ C can be done similarly). If there is an open cover {Gα : α ∈ Λ}
which does not have a finite subcover, we will arrive at a contradiction. As
A is bounded, A ⊂ I where I is an interval, say I = [a, b]. Divide I into
two equal subintervals I11 and I12. Then at least one of A ∩ I11 or A ∩ I12

will not have a finite subcover (from Gα). Call that I2. Subdivide I2 and
proceed as before. So we get Ij ⊂ Ij−1 such that Ij ∩ A cannot be cov-
ered by finitely many Gα. Let a be the unique point which belongs to all
Ij ∩ A (completeness of R is used here). Since a ∈ A ⊂

⋃
Gα there exists

α0 such that a ∈ Gα0 . But Gα0 is open and so there exists δ > 0 such that
(a− δ, a+ δ) ⊂ Gα0 . As I ′js decrease to a, for large enough j we should have
Ij ⊂ (a − δ, a + δ) ⊂ Gα0 . But this means Ij ∩ A is covered by the single
Gα0 , a contradiction to our construction of I ′js.

Conversely, assume that every open cover of A has a finite subcover.
First we show that A is bounded. Let Gn = Bn(0), n = 1, 2, · · · . Clearly
{Gn : n = 1, 2, · · · } is an open cover of A and there exists N such that

A ⊂
N⋃
n=1

Bn(0) which simply means A ⊂ BN (0) or |a| ≤ N for all a ∈ A,

i.e., A is bounded.

To show that A is closed, assume that (xn) is a Cauchy sequence in A
which converges to a ∈ C which does not lie in A. Then for any x ∈ A,
|x− a| > 0 so that with δ(x) = 1

2 |x− a| we get A ⊂
⋃
x∈A

Bδ(x)(a). This open

cover has a finite subcover - there exist y1, y2, · · · , yn ∈ A such that

A ⊂
n⋃
j=1

Bδ(yj)(a).

But this is not possible as (xn) ∈ A converges to a. Hence A has to be
closed.

This result is true only for the metric spaces R,C (or Rn,Cn etc.,) but
not true in general. We will come across some metric spaces where ’closed
and bounded’ is not equivalent to ’every open cover has a finite subcover’.
The latter property is called compactness and the above theorem says that
in R or C a set A is compact if and only if it is closed and bounded.



Chapter 2

The space of continuous
functions

We let P stand for the set of all polynomials p(x) = a0 + a1x + a2x
2 +

· · · + anx
n, n ∈ N, aj ∈ C of a real variable x. For any a, b ∈ R, a < b, we

can define a metric d on P by

d(f, g) = sup
a≤x≤b

|f(x)− g(x)|, f, g ∈ P.

It is easy to see that d is a metric. The only nontrivial thing to verify
is that d(f, g) = 0 implies f = g. Recall that if f, g ∈ P and if f(x) =
n∑
k=0

akx
k, g(x) =

m∑
k=0

bkx
k we say f = g whenever n = m and ak = bk for

0 ≤ k ≤ n. d(f, g) = 0 gives f(x) − g(x) = 0 for all a ≤ x ≤ b from which
we need to conclude that f = g. To see this, suppose p ∈ P is such that
p(x) = 0 for all a ≤ x ≤ b. We prove p = 0 by using induction on the degree
of p. If p(x) = a1x+ a0 = 0 for all a ≤ x ≤ b, clearly p = 0. Note that

p(x)− p(y) = (x− y)q(x, y)

where q is a polynomial in x of degree (n − 1) with coefficients depending
on y. For a ≤ x < y, (x− y) 6= 0 and hence q(x, y) = 0 which implies all the
coefficients of q are zero. By explicitly calculating the coefficients of q we
can show that all the coefficients of p are zero.

Thus d defined above is indeed a metric. P equipped with this metric is
denoted by P[a, b]. We claim:

Theorem 2.0.2. The metric space (P[a, b], d) is not complete.



22 The space of continuous functions

To prove this theorem we need to produce at least one Cauchy sequence
(pn) of polynomials which does not converge to any element of P. One such
sequence is provided by

pn(x) =

n∑
k=0

1

k!
xk.

Without loss of generality let us take a = 0 and b = 1 and show that (pn)
is Cauchy in P[0, 1] but (pn) cannot converge to any polynomial p in the
metric d.

It is easy to see that (pn) is Cauchy. Indeed, if m > n

pm(x)− pn(x) =
m∑

k=n+1

1

k!
xk

so that d(pm, pn) ≤
m∑

k=n+1

1
k! . Since the numerical sequence an =

n∑
k=0

1
k!

converges to e the above shows d(pm, pn) → 0 as n,m → ∞. Hence the
claim that (pn) is Cauchy.

Since |pn(x)− pm(x)| ≤ d(pn, pm) it is clear that for each x ∈ [0, 1] (for
any x ∈ R in fact)(pn(x)) converges. Let us set E(x) to be the limit function.
Our theorem will be proved if we can show that E(x) is not a polynomial.
In order to prove this we require

Proposition 2.0.3. For x, y ∈ [0, 1] with x+y ∈ [0, 1] we have E(x)E(y) =
E(x+ y).

Assume the proposition for a moment. If possible let E(x) = a0 + a1x+
· · ·+ amx

m. As pn(0) = 1 for all n, E(0) = 1 so that a0 = 1. In view of the
proposition we get

E(x)2 = E(2x), 0 ≤ x ≤ 1

2

or (1 + a1x+ · · · amxm)2 = (1 + 2a1x+ 4a2x
2 + · · · 2mamxm).

From this it is easy to show that ak = 0, 1 ≤ k ≤ m but then E(x) = 1
which is not true.

Coming to the proof of the proposition let us write

pn(x) =
n∑
k=0

ak, pn(y) =
n∑
k=0

bk
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where ak = 1
k! x

k, bk = 1
k! y

k. Define

ck =
k∑
i=0

aibk−i =
k∑
i=0

1

i!
xi

1

(k − i)!
yk−i

=
1

k!

k∑
i=0

(
k
i

)
xi yk−i =

1

k!
(x+ y)k

so that pn(x+ y) =
n∑
k=0

ck. Our result will be proved if we could show that

lim
n→∞

pn(x+ y) = lim
n→∞

(pn(x), pn(y)).

Now, from the definition

cm = a0bm + a1bm−1 + · · ·+ amb0

so that

pn(x+ y) = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + · · ·+ anb0).

This gives

pn(x+ y) = a0pn(y) + a1pn−1(y) + · · ·+ anp0(y)

Defining βn = pn(y)− E(y) we have

pn(x+ y) = a0(E(y) + βn) + a1(E(y) + βn−1) + · · ·+ an(E(y) + β0)

= pn(x)E(y) + γn

where γn = a0βn + a1βn−1 + · · ·+ anβ0.

As pn(x+ y)→ E(x+ y) and pn(x)→ E(x) we only need to prove γn → 0
as n→∞.

Given ε > 0, choose N large enough so that βn < ε for all n ≥ N. Now

γn = a0βn + · · ·+ an−N−1βN+1 + an−NβN + · · ·+ anβ0

≤ ε(a0 + · · ·+ an−N−1) + an−NβN + · · · anβ0.

Since a0 + · · ·+ am converges to E(x) ≤ e

γn ≤ eε+ an−NβN + · · · anβ0.

Fixing N, let n go to infinity. As an → 0 as n→∞ we obtain that γn ≤ 2eε
for large n. Hence γn → 0.
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Remark 2.0.1. The above function E(x) is defined for every x ∈ R. In fact
pn(x) is Cauchy for every x and hence converges to a function which is
denoted by E(x). The above property in the proposition is true for any
x, y ∈ R :

E(x)E(y) = E(x+ y).

We will make use of this function later.

Given any metric space (M,d) which is not complete, we can embed M
into a complete metric space. The construction is similar to that of R from Q.
Let M denote the set of equivalence classes of Cauchy sequences (xn) in M,
under the relation ”(xn) ∼ (yn) iff (d(xn, yn)) → 0.” Then it can be shown
that M can be made into a metric space by defining ρ(A,B) = lim

n→∞
d(xn, yn)

where (xn) ∈ A, (yn) ∈ B. Then (M,ρ) is a complete metric space.

The incomplete metric space P[a, b] can be completed as above getting a
complete metric space P[a, b]. In this particular case we can get a concrete
realisation of the completion so we dot not use this abstract approach.

Let (pn) ∈ P[a, b] be a Cauchy sequence. Then for any x ∈ [a, b],
(pn(x)) is a Cauchy sequence in C which converges. Let us define a function
f : [a, b] → C by f(x) = lim

n→∞
pn(x). We claim that (i) f is bounded and

(ii) lim
n→∞

‖f − pn‖ = 0 where ‖g‖ = sup
a≤x≤b

|g(x)| for any bounded function g

on [a, b]. As (pn) is Cauchy, there exists N such that ‖pn − pm‖ ≤ 1 for all
n,m ≥ N. Given x ∈ [a, b], as pn(x) → f(x), there exists N(x) > 0 such
that |f(x) − pn(x)| ≤ 1 for all n ≥ N(x). Taking N1 = max(N,N(x)) we
have

|f(x)| ≤ |f(x)− pN1(x)|+ |pN1(x)| ≤ 1 + ‖pN1‖

As (pn) is Cauchy ‖pn‖ ≤ C for a C independent of n. Hence ‖f‖ ≤ 1 + C.

Also, given ε > 0 choose N > 0 such that ‖pn − pm‖ < 1
2ε, for all

n,m ≥ N and N(x), for x ∈ [a, b] such that |f(x)− pn(x)| < 1
2ε, n ≥ N(x).

Then for N1 = max(N,N(x)),

|f(x)− pn(x)| ≤ |f(x)− pN1(x)|+ |pN1(x)− pn(x)| < ε

provided n > N. As this N is independent of x

sup
a≤x≤b

|f(x)− pn(x)| < ε for all n ≥ N.

The above considerations lead us to define the space C[a, b] as the set of
all functions f : [a, b]→ C for which there is a sequence (pn) of polynomials
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such that ‖f − pn‖ → 0 as n → ∞. In other words, elements of C[a, b]
are functions that can be approximated by polynomials uniformly on [a, b].
Obviously P[a, b] ⊂ C[a, b] and the inclusion is proper since E ∈ C[a, b] is
not a polynomial. We make C[a, b] into a metric space by defining d(f, g)
= ‖f − g‖ = sup

a≤x≤b
|f(x)− g(x)|. (Note that C[a, b] is a vector space over C.)

Theorem 2.0.4. C[a, b] is a complete metric space (with respect to the met-
ric d).

Proof. Let (fn) be a Cauchy sequence. Then certainly, we can define a
function f(x) by f(x) = lim

n→∞
fn(x). The theorem will be proved once we

show that f ∈ C[a, b]. First we note that f is bounded. Given x ∈ [a, b],
choose N(x) so that |f(x)− fN(x)(x)| ≤ 1. Then

|f(x)| ≤ |f(x)− fN(x)(x)|+ |fN(x)(x)| ≤ 1 + sup
n
‖fn‖.

As (fn) is Cauchy, sup
n
‖fn‖ < ∞ and hence for any x ∈ [a, b], |f(x)| ≤

1 + sup
n
‖fn‖ or f is bounded.

Our next claim is that ‖f − fn‖ → 0 as n→∞. Given ε > 0, choose N
so that ‖fn − fm‖ < 1

2ε for all n,m ≥ N. Let x ∈ [a, b] and choose N(x) so
that |f(x)− fN(x)(x)| < 1

2ε. Then

|f(x)− fn(x)| ≤ |f(x)− fN1(x)(x)|+ |fN1(x)(x)− fn(x)| < ε

if N1(x) > max(N,N(x)) and n > N. Thus ‖f − fn‖ < ε for n > N which
proves the claim.

Finally, for any k ∈ N choose fnk so that ‖f − fnk‖ < 2−k−1. As
fnk ∈ C[a, b], choose a polynomial pk such that ‖fnk − pk‖ < 2−k−1. Then
‖f − pk‖ ≤ ‖f − fnk‖+ ‖fnk − pk‖ < 2−k and hence (pk) converges to f in
C[a, b]. This completes the proof.

Given a function f : [a, b] → C it is not easy to determine whether
f ∈ C[a, b] or not. (How to find a sequence of polynomials (pn) so that
‖f − pn‖ → 0?) It is therefore, desirable to give a different characterisation
of elements of C[a, b] which is relatively easy to verify. One such property is
the so called uniform continuity of members of C[a, b].

If p is a polynomial and if x, y ∈ [a, b] we know that

p(x)− p(y) = (x− y) q(x, y),
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where q is a polynomial in two variables. So we have

|p(x)− p(y)| ≤ C|x− y|

where C = sup
a≤x≤b,a≤y≤b

|q(x, y)| <∞. This implies:

Given ε > 0, there exists δ > 0 such that |p(x) − p(y)| < ε whenever
|x− y| < δ.

(The above estimate shows that δ = C−1ε works.) The above property
continues to hold for every element of C[a, b]. Indeed, if f ∈ C[a, b]

|f(x)− f(y)| ≤ |f(x)− pn(x)|+ |pn(x)− pn(y)|+ |pn(y)− f(y)|

we only need to choose n first so that ‖f − pn‖ < ε
3 and then δ > 0 so that

|pn(x)− pn(y)| < ε
3 for |x− y| < δ.

These considerations lead us to a general definition.

Definition 2.0.5. Let f : [a, b] → C be a function. We say that f is
uniformly continuous on [a, b] if the above property holds.

We have seen that every f ∈ C[a, b] is uniformly continuous. The con-
verse is also true.

Theorem 2.0.6. f ∈ C[a, b] iff f is uniformly continuous on [a, b].

This theorem is known as Weierstrass approximation theorem. If f is
uniformly continuous on [a, b] then g(x) = f(a + (b − a)x) is uniformly
continuous on [0, 1] and hence enough to prove that g can be approximated
by polynomials uniformly on [0, 1]. Therefore, we can assume [a, b] = [0, 1]
to start with.

We give a constructive proof of this theorem. We explicitly construct a
sequence pn of polynomials, depending on f, of course, so that ‖f−pn‖ → 0.
Let

pn(x) =
n∑
k=0

(
n
k

)
f

(
k

n

)
xk(1− x)n−k.

These are called Bernstein polynomials. Note that

n∑
k=0

(
n
k

)
xk(1− x)n−k = (1− x+ x)n = 1
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and hence

f(x)− pn(x) =

n∑
k=0

(
n
k

) (
f(x)− f

(
k

n

))
xk(1− x)n−k.

Our aim is to show that given ε > 0, there exists N so that |f(x)−pn(x) < ε
for all x ∈ [0, 1] and n ≥ N.

If |f(x)−f( kn)| < ε for all k then the sum will be bounded by ε
n∑
k=0

(
n
k

)
xk

(1−x)n−k = ε. But |f(x)−f( kn)| < ε need not be true for all kn but certainly

for those k for which |x− k
n | < δ where ε and δ are related via the definition

of uniform continuity, i.e., given ε > 0 choose δ such that |f(x)− f(y)| < ε
whenever |x − y| < δ. This suggests that we split the sum into two parts:
Let I = {k : 0 ≤ k ≤ n, |x− k

n | < δ}, J = {0, 1, · · · , n} \ I.

|f(x)− pn(x)| ≤ |
∑
k∈I

(
n
k

) (
f(x)− f

(
k

n

))
xk(1− x)n−k|

+ |
∑
k∈J

(
n
k

) (
f(x)− f

(
k

n

))
xk(1− x)n−k|.

Note that

|
∑
k∈I

(
n
k

) (
f(x)− f

(
k

n

))
xk(1−x)n−k| ≤ ε

n∑
k=0

(
n
k

)
xk(1−x)n−k = ε.

On the other hand

|
∑
k∈J

(
n
k

) (
f(x)− f

(
k

n

))
xk(1− x)n−k|

≤ 2‖f‖
∑

|x− k
n
|≥δ

(
n
k

)
xk(1− x)n−k

≤ 2

δ2
‖f‖

n∑
k=0

(
x− k

n

)2 (
n
k

)
xk(1− x)n−k.

We now claim

Lemma 2.0.7.
n∑
k=0

(k − nx)2

(
n
k

)
xk(1− x)n−k = nx(1− x).
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Assuming the Lemma for a moment we see that

n∑
k=0

(
x− k

n

)2 (
n
k

)
xk(1− x)n−k ≤ x(1− x)

n
≤ 1

4n
.

Thus

|f(x)− pn(x)| ≤ ε+
2

δ2
‖f‖ 1

4n
< 2ε

if n is large (independent of x). Hence ‖f − pn‖ < 2ε for n large proving the
theorem.

We prove the Lemma by brute force calculation:

n∑
k=0

(k − nx)2

(
n
k

)
xk(1− x)n−k

=
n∑
k=0

k2

(
n
k

)
xk(1− x)n−k − 2nx

n∑
k=0

k

(
n
k

)
xk(1− x)n−k

+
n∑
k=0

n2x2

(
n
k

)
xk(1− x)n−k.

The last sum is of course n2x2. The second one equals, as

k

(
n
k

)
= k n!

k!(n−k)! = n(n−1)!
(k−1)!(n−1−(k−1))! ,

n
n∑
k=1

(
n− 1
k − 1

)
xk(1− x)n−1−(k−1)

= nx
n−1∑
k=0

(
n− 1
k

)
xk(1− x)n−1−k = nx.

The first sum is, writing k2 = k(k − 1) + k and proceeding as above, given
by n(n− 1)x2 + nx.

Hence

n∑
k=0

(k − nx)2

(
n
k

)
xk(1− x)n−k

= n(n− 1)x2 + nx− 2n2x2 + n2x2 = nx(1− x).
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We now introduce the space C(R). We say that f ∈ C(R) if f ∈ C[a, b] for
any a < b. That is, f can be approximated by a sequence of polynomials (in
the uniform norm) over any interval [a, b]. Of course, on different intervals,
the sequence may be different.

In view of Weierstrass approximation theorem f ∈ C(R) if and only if f
is uniformly continuous over every [a, b]. If x ∈ R and if we fix an interval
[a, b] containing x then we know: given ε > 0 there exists δ > 0 such that
|f(x)− f(y)| < ε for all |y − x| < δ. As x varies this δ will also vary; it can
be chosen independent of x, for all x ∈ [a, b], for fixed a < b. This leads to
the definition of continuity at a point:

We say that f is continuous at a point x if given ε > 0 there exists δ
depending on x (and ε) such that |f(x)−f(y)| < ε for all y with |y−x| < δ.

Thus every uniformly continuous function is continuous at every point
but the converse is not true. Examples: any polynomial p(x) whose degree
is greater than one, and E(x) are continuous at every x ∈ R but they are
not uniformly continuous.

Elements of C(R) are called continuous functions on R. Since we have
defined continuity at every point, we can define C(A) whenever A ⊂ R :
C(A) is just the set of all f : A→ C such that f is continuous at every point
of A. It is easy to prove the following

Proposition 2.0.8. If K ⊂ R is compact then every f ∈ C(K) is uniformly
continuous.

The proof is simple. By definition given ε > 0 and x ∈ K there exists
δ = δ(x) > 0 such that |f(x) − f(y)| < ε

2 for |y − x| < δ(x). But then
K is covered by the open sets (x − δ(x), x + δ(x)) as x varies over K. The
compactness of K shows that there are points x1, x2, · · ·xn ∈ K such that

K ⊂
n⋃
j=1

(xj −
1

2
δj , xj +

1

2
δj).

Choose δ = min{δj : 1 ≤ j ≤ n}. If x, y ∈ K and |x − y| < δ then both
x, y ∈ (xj − δj , xj + δj) for some j. Hence

|f(x)− f(y)| ≤ |f(x)− f(xj)|+ |f(xj)− f(y)| < ε.

If K ⊂ R is compact, every f ∈ C(K) is bounded (why?) and so
we can define ‖f‖ = sup

x∈K
|f(x)| and make C(K) into a metric space with

d(f, g) = ‖f − g‖. It is easy to prove that C(K) is a complete metric space.
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Can we make C(R) into a metric space? If f ∈ C(R) there is not guarantee
that f is bounded. But f ∈ C[−n, n] for any n, by definition. Let us define
dn(f, g) = sup

−n≤x≤n
|f(x)− g(x)| which is just the metric on C[−n, n]. There

is another metric on C[−n, n] equivalent to dn : that is they define the same
family of open sets; the convergence is the same in both metric. The new
metric is better in the sense that it is bounded. Simply define

ρn(f, g) =
dn(f, g)

1 + dn(f, g)
.

It is easy to verify all our claims. It is obvious that ρn(f, g) ≤ 1 for any
f, g ∈ C[−n, n].

Let us use this sequence of metrics to define a metric on C(R). Let

ρ(f, g) =
∞∑
n=1

2−nρn(f, g) =
∞∑
n=1

2−n
dn(f, g)

1 + dn(f, g)
.

Then (1) ρ is a metric on C(R). (2) (C(R), ρ) is a complete metric space.
(3) fn → f in ρ iff fn → f in C[−m,m] for every m. Thus convergence in
(C(R), ρ) is uniform convergence over compact subsets of R or simply com-
pact convergence.

It is natural to ask if an analogue of Weierstrass approximation theorem
is valid for the spaces C(K) or C(R). Stone obtained a far reaching gen-
eralisation of Weierstrass approximation theorem proving such a result for
C(K) for any ’compact Hausdorff’ space. We restrict ourselves to the case
of compact subsets K of R or C, though the same proof works in the general
case.

Stone made the following observations: C[a, b] is an algebra, i.e., C[a, b]
is a vector space over C (or R) and fg ∈ C[a, b] whenever f, g ∈ C[a, b].
Here fg is the function defined by (fg)(x) = f(x)g(x). The polynomials
P[a, b] then forms a subalgebra of C[a, b] and Weierstrass theorem says that
the subalgebra P[a, b] is dense in C[a, b]. He realised that two important
properties of P[a, b] are needed for the proof: (i) P[a, b] separates points
in the sense that given x, y ∈ [a, b], x 6= y, there is a p ∈ P[a, b] such that
p(x) 6= p(y) (in this case we can simply take p(x) = x) (ii) the constant
function f(x) ≡ 1 belongs to P[a, b].

He was able to prove the following generalisation. Let C(K,R) stand for
all real-valued continuous functions on K.

Theorem 2.0.9. (Stone-Weierstrass) Let K be a compact metric space. Let
B be any subalgebra of C(K,R) which satisfies
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(i) B separates points, i.e., given x, y ∈ K,x 6= y, there is f ∈ B such that
f(x) 6= f(y).

(ii) B contains a nonzero constant function.

Then B is dense in C(K,R), i.e., every f ∈ C(K,R) can be approximated by
members of B in the uniform norm (over K).

The proof proceeds in several steps. As B ⊂ C(K,R), f ∈ B implies
|f | ∈ C(K,R), but |f | need not be in B itself. First we show that |f | can
be approximated by elements of B. To this end we apply Weierstrass ap-
proximation theorem to the function g(t) = |t| on the interval [−‖f‖, ‖f‖]
where ‖f‖ = sup

x∈K
|f(x)|. We know that there is a sequence qn(t) of poly-

nomials such that qn → g uniformly over [−‖f‖, ‖f‖]. As g(0) = 0, the
sequence pn defined by pn(t) = qn(t)− qn(0) also converges to g. Note that
pn(0) = 0 for all n. Given ε > 0 we can choose pn such that |g(t)−pn(t)| < ε
for all t ∈ [−‖f‖, ‖f‖] so that for all x ∈ K, ||f(x)| − pn(f(x))| < ε. If

pn(t) =
m∑
j=1

aj t
j , pn(f(x)) =

m∑
j=1

aj f(x)j is an element of the algebra B.

Thus |f | is approximated by elements of B.

Next we make the following observation. Define f ∨ g and f ∧ g by

(f ∨ g)(x) = max{f(x), g(x)}
(f ∧ g)(x) = min{f(x), g(x)}.

Then we can easily verify that

(f ∨ g)(x) =
1

2
((f + g) + |f − g|)(x)

(f ∧ g)(x) =
1

2
((f + g)− |f − g|)(x).

This shows that if f and g are in B then both f ∨g and f ∧g can be approx-
imated by elements of B. The same is true if we consider f1 ∨ f2 ∨ · · · ∨ fn
and f1 ∧ f2 ∧ · · · ∧ fn for any finite number of functions fj ∈ B.

We now prove the theorem in the following way. Given f ∈ C(K,R) and
ε > 0 we show that we can find a function g such that ‖f − g‖ < ε. We then
show that this g can be approximated by elements of B, proving theorem.

So far we haven’t used any hypothesis on B or on K. Let x, y ∈ K,x 6= y.
We claim that there exists g ∈ B such that g(x) = f(x), g(y) = f(y), i.e.,
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g agrees with f at the points x and y. Since x 6= y and B separates points
there exists h ∈ B such that h(x) 6= h(y). Consider

g(t) = f(x)
h(t)− h(y)

h(x)− h(y)
+ f(y)

h(t)− h(x)

h(y)− h(x)

Then clearly, g(x) = f(x), g(y) = f(y) and g ∈ B (as B is an algebra and
B contains constant functions).

Let us fix x ∈ K and let y ∈ K be different from x. Let fy be the function
constructed above: i.e., fy ∈ B, fy(x) = f(x) and fy(y) = f(y). Consider

Gy = {t ∈ K : fy(t) < f(t) + ε}.

Since fy and f are continuous Gy is open. Further, x, y ∈ Gy and so
{Gy : y ∈ K, y 6= x} is an open cover of K which has a finite subcover
say Gy1 , Gy2 , · · · , Gyn . Let f1, f2, · · · fn be the corresponding functions. De-
fine

gx = f1 ∧ f2 ∧ · · · ∧ fn.

Then gx(x) = f(x) and gx(t) < f(t) + ε for all t ∈ K.
Next consider the open sets

Hx = {t ∈ K : gx(t) > f(t)− ε}.

As x ∈ Hx, {Hx : x ∈ K} is an open cover of K which has a finite subcover
Hx1 , Hx2 , · · ·Hxm . Let g1, g2, · · · gm be the corresponding functions and de-
fine g = g1 ∨ g2 ∨ · · · ∨ gm. Then clearly f(t) − ε < g(t) < f(t) + ε for all
t ∈ K, i.e., ‖g − f‖ < ε.

Finally, as f1, f2, · · · fn ∈ B, the functions gx can be approximated by
elements of B. Consequently, g1 ∨ g2 ∨ · · · ∨ gm = g can be approximated by
members of B. As g approximates f, we are done.

In the above theorem we have considered only real-valued functions on
K. If we consider C(K,C) then the result is not true without further as-
sumptions on the subalgebra B. Given f : K → C define f by f(x) = f(x)
where a is the complex conjugate of a ∈ C.

Theorem 2.0.10. (Stone-Weierstrass) Let K be a compact metric space.
Let B be a subalgebra of C(K,C) which satisfies the following (i) B separates
points (ii) B contains a nonzero constant function (iii) f ∈ B implies f ∈ B.
Then B is dense in C(K,C).
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Proof. If f ∈ C(K,C) define Ref(x) = 1
2(f(x)+f(x)) and Imf(x) = 1

2i(f(x)
−f(x)). Define A = B∩C(K,R). Enough to show that A is dense in C(K,R)
because then Ref and Imf can be approximated by elements of A which
will then prove the theorem.

We only need to verify that A satisfies the conditions of the real Stone-
Weierstrass theorem. Given x, y ∈ K, x 6= y, there exists f ∈ B such
that f(x) 6= f(y). Then either Ref(x) 6= Ref(y) or Imf(x) 6= Imf(y).
Since f ∈ B implies f ∈ B, both Ref = 1

2(f + f) and Imf = 1
2i(f − f)

are in A. Hence A separates points. Also A contains a non-zero constant
function. To see this, there exists a nonzero constant function say g ∈ B by
hypothesis. But then |g|2 = gg ∈ A. Hence A is dense in C(K,R), proving
the theorem.

So far we have considered Stone-Weierstrass theorem for C(K) where K
is compact. It is natural to ask what happens when K is not necessarily
compact. We take up only the case K = R and prove a version of Stone-
Weierstrass theorem not for all of C(R) but for a subspace C0(R).

We set up a one to one correspondence between functions in C[−1, 1] and
C0(R) and then appeal to the theorem in C0[−1, 1] to prove a similar theorem
for C0(R). We first note that the map g : (−1, 1)→ R defined by g(x) = x

1−|x|
sets up a one to one correspondence between (−1, 1) and R. Using this we
can set up a one to one correspondence between functions in C(R) and
functions continuous on (−1, 1), viz., if f ∈ C(R) then f̃(x) = f ◦ g(x) =
f(g(x)) is a continuous function on (−1, 1). If h denotes the inverse of g,
g ◦ h(x) = x = h ◦ g(x) (which exists as g is one to one and onto) then
f̃ ◦ h = f giving the inverse to the map f 7→ f̃ .

Consider the collection {f̃ : f ∈ C(R)}. It is not true that every f̃ defined
on (−1, 1) can be extended to a function on [−1, 1]. This can be easily seen

by taking, for example, f(x) = ex and noting that f̃(x) = eg(x) = e
x

1−|x|

does not have a limit as x → 1. If f̃ has such an extension then f̃ will
be an element of C[−1, 1]. It is easy to see what functions f on R have
this property: f̃ has an extension to [−1, 1] if and only if lim

x→∞
f(x) and

lim
x→−∞

f(x) both exist. If that is the case we simply define f̃(1) = lim
x→∞

f(x)

and f̃(−1) = lim
x→−∞

f(x).

Let C∗(R) stand for all continuous functions on R for which lim
x→∞

f(x)

and lim
x→−∞

f(x) exist. Then C∗(R) is in one-to-one correspondence with

C[−1, 1]. We denote by C0(R) the subspace of C∗(R) consisting of f with
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lim
x→±∞

f(x) = 0. Functions in C0(R) are called continuous functions vanish-

ing at ∞ (for the obvious reason). Some examples are f(x) = e−x
2
, f(x) =

(1+x2)−1 etc. C0(R) then corresponds to those f ∈ C[−1, 1] with f(±1) = 0.

It is for this C0(R) we can prove a version of Stone-Weierstrass theorem.
Note that C0(R) is an algebra of continuous functions. Let A be a subalgebra
of C0(R). Define Ã = {f̃ : f ∈ A} so that Ã is a subalgebra of C[−1, 1]. If
we can find conditions on A so that Ã satisfies conditions of the Stone-
Weierstrass theorem for C[−1, 1] then A will be dense in C0(R).

Assume that A separates points. Then if x, y ∈ (−1, 1), x 6= y, we can
find a function f̃ ∈ Ã so that f̃(x) 6= f̃(y). To see this let g(x) = x′, g(y) = y′

with x′, y′ ∈ R, x′ 6= y′. Then as A separates points there exists f ∈ C0(R)
such that f(x′) 6= f(y′). This gives f̃(x) = f(x′) 6= f(y′) = f̃(y). This
argument does not work if either x = 1 or −1. If we want Ã to separate
x = 1 and y ∈ (−1, 1) we need to assume further assumption on A viz.,
given any y ∈ R there exists f ∈ A such that f(y) 6= 0. Under this extra
condition f̃(y) 6= 0 and f̃(x) = 0 so that x = 1 and y ∈ (−1, 1) can be
separated. Similarly x = −1 and y ∈ (−1, 1) can be separated. However
x = 1 and y = −1 can never be separated as f̃(1) = f̃(−1) = 0 for any
f ∈ A.

Instead of identifying C0(R) with functions in C[−1, 1] vanishing at the
end points, let us identify it with C(−1, 1], i.e., continuous functions on
(−1, 1] which vanish at x = 1. But then the compactness of [−1, 1] is lost
and we cannot appeal to the Stone-Weierstrass theorem known for C(K)
where K is compact. There is a way out.

We define a new metric ρ on (−1, 1] which will make (−1, 1] into a
compact metric space. This ρ has to be defined in such a way that functions
in C(−1, 1] are precisely those functions that are continuous with respect to
ρ. Let us define ρ(x, y) = d(1, d(x, y)) where d(x, y) = |x−y|, x, y ∈ (−1, 1].
Then we leave it to the reader to verify that this ρ is a metric which makes
(−1, 1] into compact and the above remark about C(−1, 1] holds. To help
the reader we remark that

ρ(x, y) = min{2− |x− y|, |x− y|}.

Once this is done we can prove the following version of Stone-Weierstrass
theorem for C0(R).

Theorem 2.0.11. (Stone-Weierstrass) Let A be a subalgebra of C0(R) which
satisfies the following three conditions: (i) A separates points on R (ii) given
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any x ∈ R there exists f ∈ A such that f(x) 6= 0 (iii) f ∈ A implies f ∈ A.
Then A is dense in C0(R).

Proof. Let Ã = {f̃ : f ∈ A} so that Ã is a subalgebra of C(−1, 1] (here
(−1, 1] is the metric space equipped with the metric ρ so that it is compact).
Conditions (i) and (ii) imply that Ã separates points in (−1, 1]. However,
Ã does not contain any nonzero constant function (why?). To remedy this
consider B = {f̃ +λ : f̃ ∈ A, λ ∈ C}. Then B is a subalgebra which satisfies
all the conditions in the Stone-Weierstrass theorem for C(−1, 1].

Given f ∈ C0(R), f̃ ∈ C(−1, 1]. Let ε > 0 be given. Then there exists
h̃ + λ ∈ B (h ∈ A, λ ∈ C) such that sup

(−1,1]
|f̃(x) − h̃(x) − λ| < ε

2 . Taking

x = 1 we see that |λ| < ε
2 . Consider for x ∈ (−1, 1], |f̃(x) − h̃(x)| ≤

|f̃(x)− h̃(x)− λ|+ |λ| < ε. This means, sup
x∈R
|f(x)−h(x)| < ε. As h ∈ A our

theorem is proved.

2.1 Compact subsets of C[a, b]

We know that a subset K ⊂ R or C is compact iff it is closed and bounded.
We are interested in finding such a characterisation for compact subsets of
the metric space C[a, b]. First let us make the definition:

We say that K ⊂ C[a, b] is compact if every sequence (fn) in K has a
subsequence (fnk) which converges in K.

The above definition is usually referred to as sequential compactness of
K. The traditional definition of compactness being ’every open cover of K
has a finite subcover’. However for a metric space these two notions coincide
and so we don’t have to bother too much about open covers.

With our experience with subsets of R or C we may be tempted to think
that K ⊂ C[a, b] is compact iff it is closed and bounded. But unfortunately,
only half of this statement is true: if K is compact then it is closed and
bounded. The converse need not be true.

It is easy to see that every compact K is closed and bounded. If (fn) is
a sequence in K which is Cauchy, then the definition of compactness of K
implies the existence of a subsequence (fnk) of (fn) and an f ∈ K such that
fnk → f. But then (fn) itself should converge (check!) to f which means
K is closed. If K is compact and if we assume, if possible, that K is not
bounded, then for each n ∈ N there exists fn ∈ K with ‖fn‖ > n. But
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then this sequence (fn) cannot have any convergent subsequence (as fn is
unbounded).

We have the following counterexample to show that the converse of the
above is not true. Let K = {f ∈ C[0, 1] : ‖f‖ = 1} and consider fn(x) = xn.
Then fn ∈ K for all n. K is certainly closed and bounded (why?) but
(fn) cannot have any convergent subsequence. For, if (fnk) is a subsequence
which converges to f then f(x) = lim

k→∞
fnk(x) = 0 for 0 ≤ x < 1 and

f(1) = lim
k→∞

fnk(1) = 1 which means that f is not an element of C[0, 1], i.e.,

(fnk) cannot converge in C[0, 1].

Compact subsets of C[a, b] have a property stronger than boundedness.
Indeed let K be compact and let ε > 0. Let f1 ∈ K and consider Bε(f1).
There may be points of K outside Bε(f1). Let f2 be such a point and consider
Bε(f1)∪Bε(f2). There may (or may not) be points outside this union. Choose
fj+1 so that fj+1 does not belong to Bε(f1) ∪Bε(f2) ∪ · · · ∪Bε(fj) for each
j. We claim that this cannot go on indefinitely because otherwise we would
have a sequence (fj) in K such that ‖fj − fk‖ > ε for any k and j. This
will then contradict the compactness of K. Thus for every ε > 0, K can be
covered by finitely many Bε(fj) where fj ∈ K.

We call this property ’total boundedness’. Thus compactness of K im-
plies K is totally bounded.

An example ofK which is not totally bounded is provided by {f ∈ C[0, 1] :
‖f‖ = 1}. In this take fn defined by

fn(x) = nx, 0 ≤ x ≤ 1

n
; fn(x) = 1,

1

n
≤ x ≤ 1.

Then for m > n, ‖fn − fm‖ = 1 − n
m which shows that K is not totally

bounded. We now have the following

Theorem 2.1.1. K ⊂ C[a, b] is compact if and only if K is closed and
totally bounded.

Proof. We only need to show that if K is closed and totally bounded then it
is compact. Let (fn) be any sequence in K. As K is closed enough to show
that there exists a Cauchy subsequence of (fn). As K is totally bounded K
is contained in a finite union of balls B1(gj), gj ∈ K. At least one of them
should contain infinitely many f ′ns from our sequence. Call it (f1j) - which
is a subsequence of (fn) and all of them lie within B1(g) for some g ∈ K.
Take ε = 1

2 and cover K by finitely many ε−balls. Then (f1j) will have a
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subsequence, call it (f2j) all of which will be in some 1
2 ball. Proceeding like

this we get subsequences (fkj) all of whose elements lie in a 1
k−ball.

Now, take the diagonal sequence (fkk) which is a subsequence of (fn)
and by construction ‖fkk − fjj‖ < 2

k if k < j. This means that (fkk) is
Cauchy proving the theorem.

Total boundedness of a set K ⊂ C[a, b] has the following interesting
consequence. We know that every f ∈ K is uniformly continuous - i.e.,
given ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε for all x, y with
|x− y| < δ. But we cannot expect to choose δ independent of f ∈ K so that
|f(x) − f(y)| < ε holds for all f ∈ K and |x − y| < δ. When K is assumed
to be totally bounded such a thing is possible.

In fact, let K be totally bounded so that K ⊂
m⋃
j=1

B ε
3
(fj) for some fj ∈ K

and m ∈ N. Each fj is uniformly continuous so that we can choose δj such
that |x − y| < δj implies |fj(x) − fj(y)| < ε

3 . Let us take δ = min{δj : 1 ≤
j ≤ m} and consider |x− y| < δ. If f ∈ K then f ∈ B ε

3
(fj) for some j and

so

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
≤ 2‖f − fj‖+ |fj(x)− fj(y)| < ε.

Thus we have shown that if K is totally bounded then δ can be chosen
independent of f ∈ K. This warrants the following definition.

A set K ⊂ C[a, b] is said to be equicontinuous if given ε > 0 there exists
δ > 0 such that |f(x)− f(y)| < ε for all f ∈ K and for all |x− y| < δ.

A celebrated theorem of Ascoli shows that boundedness together with
equicontinuity implies total boundedness for subsets of C[a, b].

Theorem 2.1.2. (Ascoli) A subset K ⊂ C[a, b] is compact iff it is closed,
bounded and equicontinuous.

Proof. We only need to prove the sufficiency of the three conditions. Let
(fn) be a sequence in K. We have to show that (fn) has a subsequence
which is Cauchy. We make use of the fact that Q, the set of all rationals
is countable. Let (xn)∞1 be an enumeration of Q ∩ [a, b]. We look at the
sequence (fn(x1)) of complex numbers which is bounded since ‖fn‖ ≤ M
for all n, owing to the fact that K is bounded.

By Bolzano-Weierstrass theorem (fn(x1)) has a subsequence say (f1j(x1))
which converges. Now look at (f1j(x2)) which is again bounded. Hence there



38 The space of continuous functions

exists a subsequence (f2j(x2)) which converges. Proceeding like this we get
subsequences (fkj) with the following properties: (i) (fkj) is a subsequence
of (fk−1,j) for any k ≥ 2 (ii) (fkj(x)) converges for x = x1, x2, · · · , xk.

We claim that the diagonal sequence (fkk) is Cauchy in C[a, b] which will
then prove the theorem.

So far we haven’t used the equicontinuity of K. Let ε > 0 be given. Then
there exists δ > 0 such that |f(x) − f(y)| < ε for all |x − y| < δ and all
f ∈ K. With this δ we form an open cover Bδ(xj) of [a, b] - this is an open
cover since {xj} = Q∩ [a, b] is dense in [a, b] - and extract a finite subcover.
Let

[a, b] ⊂
n⋃
j=1

Bδ(xj)

If n is large enough we can ensure

|fkk(xj)− fmm(xj)| <
ε

3
, k,m ≥ N, 1 ≤ j ≤ n.

Finally, given x ∈ [a, b], there exists j such that x ∈ Bδ(xj) and hence

|fkk(x)− fmm(x)| ≤ |fkk(x)− fkk(xj)|+ |fkk(xj)− fmm(xj)|
+|fmm(xj)− fmm(x)|.

The middle term is less than ε
3 if k,m > N whereas the first and last are

less than ε
3 each since |x− xj | < δ. Hence ‖fkk − fmm‖ < ε for all k,m ≥ N

and this proves the claim.

2.2 The space of real analytic functions

Suppose f ∈ C(R). Then by definition given any [a, b] ⊂ R, there exists
a sequence of polynomials pn converging to f uniformly over [a, b]. The
sequence (pn) will certainly depend on [a, b] and it will be nice if we can
choose a single sequence independent of [a, b]. We are interested in functions
f ∈ C(R) for which such a sequence can be found. Even if we can find a single
sequence converging to f uniformly over every compact subset of R there
may not be any simple relation between pn+1 and pn. We therefore impose
one more condition on pn requiring that pn+1(x) = pn(x) + an+1x

n+1. Then
the sequence (pn) is completely determined by a sequence (an) of complex

numbers: p0(x) = a0, p1(x) = a0 + a1x, · · · , pn(x) =
n∑
k=0

akx
k.
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Let us say that f ∈ Cω(R; 0) if there exists a sequence pn(x) of polyno-

mials of the form pn(x) =
n∑
k=0

ak x
k such that pn → f in C[a, b] for every

[a, b] ⊂ R (or equivalently pn converges to f uniformly over every compact
subset of R). Such functions are called real analytic functions.

Obviously, every polynomial p belongs to Cω(R; 0). We also know that
E ∈ Cω(R; 0) for which the required sequence pn is given by pn(x) =
n∑
k=0

1
k! x

k.

It is natural to ask: how to produce real analytic functions. As the
above considerations show we have to start with a sequence (ak) of complex

numbers and form the sequence pn(x) =
n∑
k=0

ak x
k of polynomials. If we

have luck, this sequence may converge uniformly over every compact subset
K of R. Then the limit function, will be an element of Cω(R; 0).

A simple necessary condition for the sequence (pn) to converge is that
ak → 0 as k → ∞ but this is not sufficient. Some more conditions need to
be imposed if we want (pn) to converge uniformly over compact subsets.

A sufficient condition can be obtained using the so-called root test for
infinite series.

Consider an infinite series
∞∑
k=0

ak of complex numbers. By this we mean

the limit of a sequence of the form sn = a0 +a1 + · · ·+an, called the partial

sums of the series. We say that the series
∞∑
k=0

ak converges if (sn) converges.

The series is said to converge absolutely if
∞∑
k=0

|ak| converges.

In order to state the root test we require the notion of lim sup and lim inf.
Given a sequence (an) which is bounded then by Bolzano-Weierstrass we
know that there is at least one subsequence (ank) of (an) which converges.
Let E be the set of all such limits, i.e., a ∈ E if and only if there is a
subsequence (ank) of (an) which converges to a. If (an) is unbounded then
depending on whether it fails to be bounded above or below we can also get
subsequences tending to +∞ or −∞. If so we include∞ and −∞ also in E.
Let s∗ = supE and s∗ = inf E. We define

lim sup an = s∗, lim inf an = s∗.

We can now prove the following.
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Proposition 2.2.1. Given a series
∞∑
k=0

ak let α = lim sup |an|
1
n . Then the

series converges absolutely if α < 1; it diverges if α > 1 (if α = 1 we cannot
say anything).

Proof. Let α < 1 and choose β, α < β < 1. Then we claim that |an|
1
n < β for

all but finitely many values of n. For, otherwise there will be a subsequence
(ank) with β ≤ ank which will lead to the conclusion that lim sup an ≥ β > α
which is not true. Hence the claim is proved and starting from some N we

have |an| < βn. Since the geometric series
∞∑
k=0

βn converges so does
∞∑
k=0

|ak|.

Let us now assume α > 1. We claim that α ∈ E, the set of all limit
points of |an|

1
n . To see this take any interval (α − δ, α + δ) containing α.

Since α is the supremum of E, we can find s ∈ E ∩ (α− δ, α+ δ). But now

s is a limit point and so we can find at least one |an|
1
n in (α − δ, α + δ).

As this is true for every δ, we can get a sequence (|ank |
1
nk ) converging to α.

This simply means that α ∈ E.
Along such a sequence |ank | > 1 for infinitely many values of k and hence

∞∑
k=0

ak cannot hope to converge.

Applying the above proposition we can prove the following theorem.

Theorem 2.2.2. Given a sequence (ak) consider the power series
∞∑
k=0

ak x
k.

Let α be defined by α = lim sup |an|
1
n . Let R = 1

α . Then the above series con-
verges for every x, with |x| < R and diverges for |x| > R. The convergence
is uniform over compact subsets of the interval (−R,R).

Proof. We only need to apply the root test to the series: it converges pro-
vided

lim sup |ak xk|
1
k < 1

(which translates into |x| < R) and diverges when lim sup |ak xk|
1
k > 1

(which is the same as |x| > R).

If the power series
∞∑
k=0

ak x
k converges and if R is as above, then R is

called the radius of convergence. We can define a function f : (−R,R)→ C

by f(x) =
∞∑
k=0

ak x
k. As the series converges uniformly over compact subsets
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of (−R,R), f ∈ C(−R,R). We say that f has the power series expansion
∞∑
k=0

ak x
k.

Consider a polynomial p(x) =
n∑
k=0

ak x
k. Given y ∈ R we can rewrite the

polynomial in the form p(x) =
n∑
k=0

bk (x− y)k. To do this we write

xk = (x− y + y)k =

k∑
j=0

(
k
j

)
yk−j (x− y)j

so that

p(x) =

n∑
k=0

ak

k∑
j=0

(
k
j

)
yk−j (x− y)j

=

n∑
j=0

 n∑
k=j

ak

(
k
j

)
yk−j

 (x− y)j .

Thus with bj = bj(y) =
n∑
k=j

ak

(
k
j

)
yk−j , p(x) has the expansion

n∑
j=0

bj(y)(x− y)j .

If f(x) is represented by a power series
∞∑
k=0

ak xk over the interval

(−R,R) and if y ∈ (−R,R) we would like to represent f(x) in the form
∞∑
k=0

bk(y)(x− y)k. Proceeding as in the case of a polynomial we get

∞∑
k=0

ak x
k =

∞∑
k=0

ak

 k∑
j=0

(
k
j

)
yk−j(x− y)j

 .

If we can change the order of summation we get

∞∑
k=0

ak x
k =

∞∑
j=0

 ∞∑
k=j

ak

(
k
j

)
yk−j

 (x− y)j .

In order to justify this ’change of order’ we require a result on double series.
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Theorem 2.2.3. Consider the series
∞∑
i=0

∞∑
j=0

aij . Suppose we know that
∞∑
j=0
|aij |

= bi <∞ and
∞∑
i=0

bi <∞. Then

∞∑
i=0

∞∑
j=0

aij =

∞∑
j=0

∞∑
i=0

aij .

Proof. In order to prove this, let x0 = 0, xk = 1
k , k = 1, 2, · · · and consider

the metric space E = {xk : k = 0, 1, 2, · · · } ⊂ R. Define functions fi : E → C
by

fi(xn) =
n∑
j=0

aij , fi(x0) =
∞∑
j=0

aij .

Note that fi are continuous functions on E. We also define

g(x) =
∞∑
i=0

fi(x).

For each x ∈ E, |fi(x)| ≤ bi and hence the series defining g converges
uniformly over E and hence g is continuous.

On the one hand

g(x0) =

∞∑
i=0

fi(x0) =

∞∑
i=0

∞∑
j=0

aij

and on the other hand

g(x0) = lim g(xn) = lim
∞∑
i=0

fi(xn) = lim
∞∑
i=0

n∑
j=0

aij .

In the last sum we can change the order of summation:

lim g(xn) = lim

n∑
j=0

∞∑
i=0

aij =

∞∑
j=0

∞∑
i=0

aij .

This proves the theorem.



2.2 The space of real analytic functions 43

Returning to our discussion on power series consider the coefficients bj(y)
defined by

bj(y) =
∞∑
k=j

ak

(
k
j

)
yk−j

=
∞∑
k=0

ak+j

(
k + j
j

)
yk.

It is easy to see that the radius of convergence of this series defining bj(y)
is the same as that of

∑
ak x

k. Hence for any y ∈ (−R,R) the coefficients
are well defined.

We can obtain
∞∑
k=0

ak x
k =

∞∑
j=0

bj(y) (x− y)j

provided, in view of the above result on double series,

∞∑
k=0

k∑
j=0

|ak|
(
k
j

)
|y|k−j |x− y|j < ∞

i.e.,
∞∑
k=0

|ak| (|y|+ |x− y|)k < ∞.

This happens precisely when |x− y|+ |y| < R. Thus we have the following

Theorem 2.2.4. Suppose f(x) =
∞∑
k=0

ak x
k has R as its radius of conver-

gence. Given any y ∈ (−R,R) we can write

f(x) =
∞∑
j=0

bj(y) (x− y)j

for all x satisfying |x − y| < R − |y|. Moreover, the coefficients bj(y) are
given by the power series

bj(y) =

∞∑
k=j

ak

(
k
j

)
yk−j .

The above theorem says that if f(x) can be represented as
∞∑
k=0

ak (x−a)k

converging over an interval (a−R, a+R) then for any y in this interval we



44 The space of continuous functions

can also represent f(x) as
∞∑
k=0

bk (x− y)k valid for all values of x in a small

interval centred at y. This motivates us to make the following definition.

We say that a continuous function f on (a, b) belongs to Cω(a, b) if for

any y ∈ (a, b), f can be represented as
∞∑
k=0

ak(x− y)k valid for all x in some

interval containing y. Members of Cω(a, b) are called real analytic functions
on (a, b).

It is convenient to denote the power series expansion of f in the form

f(x) =
∞∑
k=0

1

k!
ak x

k.

If we take y from the interval of convergence of the above series and expand
f(x) in the form

f(x) =

∞∑
j=0

1

j!
bj(y) (x− y)j

then we get

bj(y) = j!

∞∑
k=j

1

k!
ak

(
k
j

)
yk−j

which after simplification gives

bj(y) =

∞∑
k=0

1

k!
ak+j y

k.

We have shown earlier that if two polynomials p and q agree over an
interval then p = q everywhere. This property is shared by power series: if
two power series represent the same function over an interval, they coincide
over the whole common interval of convergence. Actually some thing much
stronger is true.

Theorem 2.2.5. Suppose we have two power series f(x) =
∞∑
k=0

ak (x−a)k

and g(x) =
∞∑
k=0

bk (x− a)k both converging in |x− a| < r. If f(xn) = g(xn)

along a sequence xn → a then ak = bk for all k and consequently f(y) = g(y)
for all y in |x− a| < r.
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Proof. Both f and g are continuous. Hence f(xn) = g(xn) for all n gives
f(a) = g(a) which means a0 = b0.Now consider f1(x) = (x−a)−1(f(x)− a0),
g1(x) = (x − a)−1(g(x) − b0). Both are continuous, given by power series
and f1(xn) = g1(xn) for all n. As before this gives, a1 = b1. Proceeding by
induction we get ak = bk for all k.

Consider now a real analytic function f(x) =
∞∑
k=0

1
k! ak x

k with radius

of convergence R. Then for any y ∈ (−R,R) we can also represent f in the

form f(x) =
∞∑
k=0

1
k! bk(y) (x− y)k where

bj(y) =
∞∑
k=0

1

k!
ak+j y

k.

This suggests that we introduce an operator D : Cω(−R,R) → Cω(−R,R)

as follows. If f(x) =
∞∑
k=0

1
k! ak x

k we simply define

Df(x) =

∞∑
k=0

1

k!
ak+1 x

k.

It is clear that Df ∈ Cω(−R,R) whenever f is in Cω(−R,R). Let D2(f) =
D(Df) and so on. Then

bj(y) = Djf(y).

Let us write D0f(x) = f(x) = b0(x). Then the function f(x) has the expan-
sion

f(x) =

∞∑
k=0

1

k!
Dkf(y) (x− y)k.

This series is known as the Taylor series of f centred at y. Note that as
f ∈ Cω(−R,R), the series converges in a neighbourhood of the point y.

The function Dkf is given by the power series

Dkf(x) =

∞∑
j=0

1

j!
aj+k x

j

and is called the kth derivative of f.
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Given f ∈ Cω(a, b) and y ∈ (a, b) by definition there is a power series
expansion

f(x) =

∞∑
k=0

bk(y) (x− y)k.

It is worthwhile to find a formula for the various coefficients bk(y) appearing
in the above expansion. First of all we note that b0(y) = f(y) by simply
evaluating f at y. We then have

f(x)− f(y) =
∞∑
k=1

bk(y) (x− y)k

which we can write as f(x) − f(y) = (x − y) g(x, y), where g(x, y) =
∞∑
k=0

bk+1(y) (x−y)k. This g is a continuous function of x in a neighbourhood

of y and as x→ y we get

lim
x→y

g(x, y) = g(y, y) = b1(y).

In otherwords

b1(y) = lim
x→y

f(x)− f(y)

x− y

and as b1(y) = Df(y) we get the formula Df(y) = lim
x→y

f(x)−f(y)
x−y . As we have

noted earlier Df(x) is again given by a power series and D2f(y) = D(Df)(y)
etc. We also have

Djf(y) = lim
x→y

(
f(x)−

j−1∑
k=0

Dkf(y)
k! (x− y)k

)
(x− y)j

.

We can write the above as

f(x)−
j−1∑
k=0

1

k!
Dkf(y) (x− y)k = (x− y)j gj(x, y)

where gj(x, y) is a continuous function in a neighbourhood of y. If |gj(x, y)| ≤ Cδ
for |x− y| ≤ δ we get

|f(x)−
j−1∑
k=0

1

k!
Dkf(y) (x− y)k| ≤ Cδ |x− y|j
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which gives a rate at which the polynomials

pn(x) =
n∑
k=0

1

k!
Dkf(y) (x− y)k

converge to the function f(x).

The above discussions lead us to the following definition. We set C0(a, b)
= C(a, b), the space of all continuous functions on (a, b). For m = 1, 2, 3, · · ·
we define Cm(a, b) to be the space of all f for which Df ∈ Cm−1(a, b). Here
Df is the function defined by

Df(y) = lim
x→y

f(x)− f(y)

x− y
, y ∈ (a, b).

Thus, f ∈ Cm(a, b) if and only if f is ’m times differentiable’ and Dmf is

continuous. We let C∞(a, b) =
∞⋂
m=1
Cm(a, b). We note that

Cω(a, b) ⊂ C∞(a, b) ⊂ Cm(a, b) ⊂ C0(a, b)

and all the inclusions are proper.

The function f(x) = |x| is not differentiable at x = 0 though it is obvi-
ously continuous. The function f defined by

f(x) = e−
1
x2 , x 6= 0, f(0) = 0

is a C∞ function on R. Nevertheless, the function is not real analytic in any
interval containing the origin. This can be directly verified by assuming that
there is a power series expansion of the form

∑
ak x

k converging to f(x) in
a neighbourhood of x = 0 and arriving at a contradiction.

Another striking result is the fact that there are continuous functions
which are nowhere differentiable. First example of such a function was
given by Weierstrass around 1875. He showed that when a is an odd positive
integer and 0 < b < 1 is such that ab > 1 + 3

2π the function

f(x) =
∞∑
k=0

bk cos(akπx)

is nowhere differentiable. Later in 1916 Hardy showed that the above f is
nowhere differentiable if ab ≥ 1. He had also proved that

f(x) =

∞∑
n=1

sinn2πx

n2
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is nowhere differentiable. Existence of such functions can be proved by
appealing to Baire’s category theorem to the complete metric space C(R).

We can easily construct one nowhere differentiable function. Let ϕ(x) = |x|
for |x| ≤ 1. Extend ϕ to the whole real line as a 2−periodic function:

ϕ(x + 2) = ϕ(x). Let f(x) =
∞∑
n=1

(
3
4

)n
ϕ(4nx). Then this f is not dif-

ferentiable at any point.

To prove this first note that |ϕ(x)| ≤ 1 so that the above series converges
uniformly and hence f is continuous. We also note that

|ϕ(s)− ϕ(t)| ≤ |s− t|.

Fix a real number x and define for each positive integer m, δm = ±1
2 · 4

−m

where the sign is chosen so that no integer lies between 4mx and 4m(x+ δm)
(which is possible since 4mδm = ±1

2). Consider

γn =
ϕ(4n(x+ δm))− ϕ(4nx)

δm
.

When n > m, 4nδm = 2p for some integer p and as ϕ is 2−periodic, ϕ(4n(x+
δm)) = ϕ(4nx) or γn = 0. Thus

f(x+ δm)− f(x)

δm
=

m∑
n=0

ϕ(4n(x+ δm))− ϕ(4nx)

δm
·
(

3

4

)n
.

As |γn| ≤ 4n, and |γm| = 4m by the choice of δm we get

|f(x+ δm)− f(x)|
δm

≥ |γm| −
m−1∑
n=0

|γn|
(

3

4

)n
≥ 3m −

m−1∑
n=0

3n =
1

2
(3m + 1).

Letting m→∞ we see that δm → 0 but the derivative of f doesn’t exist at
x.

When f ∈ Cω(a, b), f can be expanded as f(x) =
∞∑
j=0

1
j! D

jf(y)(x− y)j

for any y ∈ (a, b) and the series converges uniformly over an interval con-
taining y. Defining

Pm−1(x) =
m−1∑
j=0

1

j!
Djf(y) (x− y)j
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we can write
f(x) = Pm−1(x) + gm(x, y) (x− y)m

where gm(x, y) =
∞∑
j=m

1
j! D

jf(y) (x−y)j−m. As gm is a continuous function,

we get |gm(x, y)| ≤ Cη in a neighbourhood |x− y| < η of y. Thus

|f(x)− Pm−1(x)| ≤ Cη |x− y|m, |x− y| < η.

Given ε > 0 we can choose δ < η such that Cη δ
m < ε. Then we have

|f(x)− Pm−1(x)| < ε, |x− y| < δ.

Thus the polynomial Pm−1(x) approximates f(x) very well near the point
y.

For the above approximation to be valid we only require f to be Cm near
the point y. Indeed we have

Theorem 2.2.6. (Taylor). Let f ∈ Cm(a, b) be a real-valued function and
let y ∈ (a, b). Given ε > 0 we can choose δ > 0 such that

|f(x)−
m−1∑
j=0

1

j!
Djf(y) (x− y)j | < ε

for all x with |x− y| < δ.

The polynomial Pm−1(x) is called the Taylor polynomial centred at y
associated to the function f(x).

In order to prove the theorem we claim that given any x ∈ (a, b) there
exists a point ξ lying between x and y such that

f(x)− Pm−1 =
1

m!
Dmf(ξ) (x− ξ)m.

Here ξ depends on x (and also on y which is fixed now). Once this claim is
proved it is easy to prove the theorem. As Dmf ∈ C(a, b) we know that in
a neighbourhood |x− y| < η, |Dmf(x)| ≤ Cη. Hence

|f(x)− Pm−1(x)| ≤ Cη
1

m!
|x− y|m

which immediately gives the theorem.

To prove the claim we first take up the case m = 1 which is called mean
value theorem. We actually prove a generalised mean value theorem.
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Theorem 2.2.7. (Mean value theorem). Let f, g ∈ C[a, b] be real-valued
functions. Assume that f and g are differentiable at every point of (a, b).
Then for any x < y in (a, b) there exists ξ ∈ (x, y) such that

(f(x)− f(y)) g′(ξ) = (g(x)− g(y)) f ′(ξ).

Proof. Consider the function

h(t) = (f(x)− f(y)) g(t)− (g(x)− g(y)) f(t).

This h is continuous on [a, b], differentiable on (a, b) and satisfies h(x) = h(y).
If h is a constant throughout [x, y] there is nothing to prove. Otherwise, it
either reaches a maximum or minimum at an interior point ξ of [x, y]. Let
us say h(ξ)− h(t) > 0 for all t ∈ (ξ − δ, ξ + δ) for some δ > 0 (i.e., h has a
local maximum at t = ξ). Then on the one hand

h(t)− h(ξ)

(t− ξ)
≥ 0 for t ∈ (ξ − δ, ξ)

and on the other hand

h(t)− h(ξ)

(t− ξ)
≤ 0 for t ∈ (ξ, ξ + δ).

Therefore, in the limit 0 ≤ h′(ξ) ≤ 0, i.e., h′(ξ) = 0. This means

(f(x)− f(y)) g′(ξ) = (g(x)− g(y)) f ′(ξ)

which proves the theorem.

If we take g(t) = t we get the usual mean value theorem: f(x)− f(y)
= (x− y)f ′(ξ). We are now in a position to prove our claim: Define

g(t) = f(t)− pm−1(t)− C(t− y)m

where we choose C in such a way that

g(x) = f(x)− pm−1(x)− C(x− y)m = 0.

Note that g(y) = g′(y) = · · · = gm−1(y) = 0. Since g(x) = 0 = g(y),
by mean value theorem we get a point x1 in between x and y such that
g′(x1) = 0. Now g′(x1) = 0 = g′(y) and again there exists x2 such that
g′′(x2) = 0. Proceeding like this we get a point ξ at which g(m)(ξ) = 0. But
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g(m)(t) = f (m)(t) −m!C or C = 1
m! f

(m)(ξ) and this is what we wanted to
prove.

When f ∈ Cω(a, b) and y ∈ (a, b) we have f(x) =
∞∑
j=0

fj(x) where

fj(x) = 1
j! D

jf(y) (x − y)j . The series being convergent uniformly in a
neighbourhood containing y we can calculate derivatives of f at y by simply
taking derivatives of fj and summing them up. That is for any k,

Dkf(y) =
∞∑
j=0

Dkfj(y).

(In fact Dkfj(y) = 0 unless j = k and so the above series reduces to just
one term). In general if fj are differentiable and f =

∑
fj it may not be

true that Df =
∑
Dfj . This is equivalent to saying that fn → f need not

imply Dfn → Df even if fn → f uniformly. A simple example is given by
fn(x) = 1√

n
einx which converges to 0 uniformly but f ′n does not converge.

We can consider D as an operator taking C1(a, b) into C(a, b). Suppose
we equip C1(a, b) with the metric inherited from C(a, b) so that it is a sub-
space of C(a, b). Then we can ask if D : C1(a, b) → C(a, b) is continuous
or not. Unfortunately it is not continuous. Indeed, consider fn(x) = xn in
C1(−1, 1) which converges to 0. However, Dfn(x) = nxn−1 does not converge
in C(−1, 1). To remedy the situation we define a new metric on C1(a, b).

Recall that the metric ρ on C(a, b) is defined by ρ(f, g) =
∞∑
n=1

2−n dn(f,g)
1+dn(f,g)

where dn(f, g) = sup
x∈[a+ 1

n
,b− 1

n
]

|f(x)− g(x)|. Define ρ1 on C1(a, b) by

ρ1(f, g) = ρ(f, g) + ρ(Df,Dg).

More generally, we define

ρm(f, g) =

m∑
j=0

ρ(Djf,Djg)

on Cm(a, b). Then it is easy to see that Cm+1(a, b) ⊂ Cm(a, b) and the in-
clusion is continuous. When we consider Cm+1(a, b) with the metric ρm+1

the operator D : Cm+1(a, b) → Cm(a, b) becomes continuous. Actually, we
have a slightly stronger result. In the following theorem we give a sufficient
condition on a sequence fn so that lim

n→∞
Dfn = D( lim

n→∞
fn).
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Theorem 2.2.8. Let fn be a sequence of differentiable functions on (a, b)
so that f ′n converges to g uniformly over (a, b). If there is a point x0 ∈ (a, b)
at which (fn(x0)) converges, then (fn) converges uniformly to a function f,
which is differentiable and g = f ′. That is D( lim

n→∞
fn) = lim

n→∞
Dfn.

Proof. First we show that (fn) is uniformly Cauchy so that there exists f
to which it converges. Consider

fn(x)− fm(x) = (fn(x)− fm(x))− (fn(x0)− fm(x0)) + (fn(x0)− fm(x0)).

As (fn(x0)) converges we can choose n and m large so that |fn(x0)− fm (x0)|
< ε

2 . On the other hand by mean value theorem

|(fn(x0)− fm(x))− (fn(x0)− fm(x0))| ≤ |x− x0||f ′n(ξ)− f ′m(ξ))|

which converges to 0 uniformly as n,m → ∞ since f ′n converges to g uni-
formly.

Consider now

ϕn(t) =
fn(t)− fn(x)

t− x
, ϕ(t) =

f(t)− f(x)

t− x
.

Then we have lim
t→x

ϕn(t) = f ′n(x) which converges to g(x) i.e., lim
n→∞

lim
t→x

ϕn(t)

= g(x). We need to show that

lim
n→∞

lim
t→x

ϕn(t) = lim
t→x

lim
n→∞

ϕn(t)

which will prove the theorem as ϕn(t) → ϕ(t) for t 6= x. We claim that
ϕn → ϕ uniformly on (a, b) \ {x}. Indeed,

ϕn(t)− ϕm(t) =
fn(t)− fm(t) + fm(x)− fn(x)

t− x
gives by mean value theorem

|ϕn(t)− ϕm(t)| ≤ |f ′n(ξ)− f ′m(ξ)| < ε

if n,m are large. Thus the convergence of (ϕn) to ϕ is uniform in (a, b)\{x}.
We complete the proof by appealing to the following proposition.

Proposition 2.2.9. Suppose (fn) is a sequence of functions converging
to a function f uniformly on a set E. Let x be a limit point of E. Let
lim
t→x

fn(t) = An. Then (An) converges and lim
n→∞

An = lim
t→x

f(t),

i.e., lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).
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Proof. It is easy to see that (An) is Cauchy. Indeed, given ε > 0 there exists
N such that n,m ≥ N implies

|fn(t)− fm(t)| ≤ ε for all t ∈ E.

Letting t → x we get |An − Am| ≤ ε for n,m ≥ N. Hence there exists A
such that An → A. To show that A = lim

t→x
f(t) we write

|A− f(t)| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A|.

The first and last terms are less than ε
3 each if n is large enough. Then

|fn(t)−An| < ε
3 if t is close to x. This proves the proposition.

We complete our discussion on differentiable functions by proving inverse
function theorem for functions of one variable.

Theorem 2.2.10. Let f : (a, b) → (c, d) be a differentiable function which
is onto. If f ′ never vanishes on (a, b), then f has an inverse g which is also
differentiable.

If f : [a, b]→ R is a continuous function which is one to one, then f has
an inverse g : E → [a, b] where E is the range of f, i.e., E = f([a, b]). In this
case it is easy to see that g is continuous.

If g is not continuous at some point y ∈ E, then there will be a sequence
yn ∈ E which converges to y but g(yn) will not converge to g(y). Let xn =
g(yn), x = g(y) so that f(xn) = yn, f(x) = y. Since xn does not converge
to x, there exists δ > 0 and a subsequence (xnk) such that |xnk − x| > δ
for all k. As (xnk) ∈ [a, b] it will have a convergent subsequence converging
to some point x0. But then by continuity of f, f(x0) which is the limit of a
subsequence of (yn) should be equal to y = f(x). By one to one-ness, x = x0

contradicting that |xnk − x| > δ.

The result is true even if we assume that f : (a, b)→ (c, d) is continuous
and bijective. To show that g is continuous we proceed as above. There are
two cases to consider. If f is bounded on (a, b) then f is defined at a and b
(since f is monotone on (a, b) we can extend the definition). In this case the
above argument goes through. If f is unbounded, say lim

t→b
f(t) =∞, then as

above we will get a subsequence x̃nk along which f will be unbounded. This
will contradict the fact that f(x̃nk) which converges to y is bounded.

Coming to the proof of the inverse function theorem consider f : (a, b)→
(c, d) for which f ′(x) 6= 0 for all x ∈ (a, b). Then by intermediate value
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theorem for derivative we know that either f ′(x) > 0 or f ′(x) < 0 for all x. In
either case f is one to one and hence it has an inverse. Let f : (c, d)→ (a, b)
be the inverse such that g(f(x)) = x, x ∈ (a, b) and f(g(y)) = y, y ∈ (c, d).
We already know that g is continuous.

To show that g is differentiable at y = f(x) consider g(y + k) − g(y).
Define h by y + k = f(x+ h). We then have

g(y + k)− g(y) = x+ h− x = h

and k = f(x+ h)− f(x). Therefore,

g(y + k)− g(y)

k
=

h

f(x+ h)− f(x)
=

(
f(x+ h)− f(x)

h

)−1

.

As k → 0, h also tends to 0 (by continuity of g) and hence g′(y) exists and
equals f ′(x)−1. This proves the theorem.

2.3 The exponential and trigonometric functions

Recall that the function e(x) defined by the power series
∞∑
k=0

1
k! x

k satisfies

the equation e(x)e(y) = e(x+y). It follows either from this equation or from
the above equation that De(x) = e(x). It can be shown that it is the unique
function, upto a constant multiple, satisfying Du(x) = u(x) for all x ∈ R.

The above power series converges uniformly over compact subsets of R.
It can be easily checked that e(x) can be extended to C simply by defining

e(z) =

∞∑
k=0

1

k!
zk, z ∈ C.

The power series with x replaced by z also converges uniformly on every
compact subset of C. Further e(z)e(w) = e(z + w) continues to hold even
for complex z, w.

Of particular interest is the function e(ix), x ∈ R. We can write this as
e(ix) = c(x) + is(x) where

c(x) =
∞∑
k=0

(−1)k
x2k

(2k)!
, s(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Since e(z) = e(z) as can be easily verified it follows that |e(ix)|2 = c(x)2+ s(x)2

= 1. We now show that the functions c(x) and s(x) are periodic and conse-
quently e(z) is also periodic.
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Theorem 2.3.1. There exists a positive real number π such that e(z+2πi) =
e(z) for all z ∈ C.

Proof. We show that c(x) has a zero on (0,∞) and by taking x0 to be the
smallest such zero and defining π = 2x0 we prove our theorem. To show
that c(x) has zeros on (0,∞) assume the contrary. As can be easily checked
Dc(x) = −s(x) and Ds(x) = c(x). Since c(0) = 1, it follows that c(x) > 0
for all x > 0 and hence s(x) is strictly increasing on (0,∞). By mean value
theorem, for 0 < x < y

c(x)− c(y) = −s(ξ)(x− y), ξ ∈ (x, y)

and by the monotonicity of s(x) and the boundedness of c(x) we get

s(x)(y − x) < c(x)− c(y) ≤ 2

for all y > x which is clearly not possible. Hence c(x) has positive zeros and
as c(0) = 1, there is a smallest zero, say x0, which is positive.

It then follows that c(π2 ) = 0 and hence s(π2 )2 = 1. As s(x) > 0 on (0, π2 )
we have s(π2 ) = 1 and so e(iπ2 ) = i. Consequently, e(iπ) = 1 and e(2πi) = 1.
This proves that e(z + 2πi) = e(z). By the choice of π

2 we see that 2π is the
smallest positive real number with this property.

Corollary 2.3.2. The map t 7→ e(it) is a bijection from [0, 2π) onto S1 =
{z ∈ C : |z| = 1}.

Proof. When z ∈ S1 with z = x+ iy, x ≥ 0, y ≥ 0 we can find t ∈ [0, π2 ] such
that c(t) = x by the continuity of c. As x2 + y2 = 1 it follows that s(t) = y
and e(it) = x + iy. When x < 0 and y ≥ 0, we can find t ∈ [0, π2 ] so that
−iz = y − ix = e(it). As i = e(π2 i) it follows that e(i(t + π

2 )) = ie(it) = z.
By similar arguments we can handle the remaining cases.

The surjectivity of the map t 7→ e(it) shows that the equation zn = α has
a solution whenever α ∈ S1 and n = 1, 2, · · · . Indeed, simply take z = e( itn )
where t is chosen in [0, 2π) so that e(it) = α. With this observation the
fundamental theorem of algebra stands completely proved.

2.4 Functions of several variables

So far we have considered real (or complex) valued functions defined on R.
Now we will consider functions defined on subsets of Rn taking values in
Rm. Let us quickly set up notation.
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By Rn we mean the cartesian product R × R × · · · × R (n times) the
elements of which are n-tuples of real numbers. We define x+ y =
(x1 + y1, · · · , xn + yn) if x = (x1, · · · , xn) and y = (y1, · · · , yn) are from
Rn. With this addition Rn is an abelian group. The scalar multiplication
λx, λ ∈ R is defined by λx = (λx1, · · · , λxn). Thus Rn becomes a vector
space. The standard basis for Rn is given by the vectors ej = (0, · · · , 1, · · · , 0)
(where 1 is in the jth place), j = 1, 2, · · · , n.

For x ∈ Rn we define its Euclidean norm |x| to be the positive square

root of
n∑
j=1

x2
j . Then d(x, y) = |x− y| defines a metric which makes Rn into

a complete metric space. The space C(Rn;C) of complex valued functions
defined on Rn can be made into a complete metric space by defining

ρ(f, g) =

∞∑
m=1

2−m
dm(f, g)

1 + dm(f, g)

where dm(f, g) = sup
|x|≤m

|f(x)−g(x)|.We can also consider the space C(Rn,Rm)

of continuous functions f : Rn → Rm.
We are interested in extending the notion of derivative for functions

f : Rn → Rm. When n = 1, it is very easy to do this. Suppose f : R→ Rm
is a function taking values in Rm. Then defining fj(t) = (Pj ◦ f)(t) where
Pj : Rm → R is the projection of Rm onto the jth coordinate space we have
f(t) = (f1(t), · · · , fm(t)). It is therefore natural to define

Df(t) = (Df1(t), · · · , Dfm(t))

so that Df is again a function defined on R taking values in Rm. It is clear
that if f : R→ Rm is differentiable at a point t, then it is continuous there.

The situation changes drastically if we consider functions of several vari-
ables. Let f : Rn → R be a real valued function. For each j = 1, 2, · · · , n
we can consider f as a function of xj , keeping the other variables fixed. The
derivative with respect to the jth variable is denoted by ∂

∂xj
f or ∂jf. Thus

∂jf(x) = lim
t→0

f(x+ tej)− f(x)

t

where ej = (0, · · · , 1, 0, · · · , 0) are the co-ordinate vectors. Contrary to the
expectations, the existence of partial derivatives ∂jf(x), j = 1, 2, · · · , n does
not guarantee the continuity of the function at x. For example, if f(x, y) =
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xy(x2 + y2)−1, (x, y) ∈ R2, (x, y) 6= (0, 0) and f(0, 0) = 0, then ∂1f(0) and
∂2f(0) both exist. However, it is clear that f is not continuous at 0.

As the following proposition shows, if ∂jf(x) exist for all x ∈ E and if
they are all bounded then f becomes continuous.

Proposition 2.4.1. Let E ⊂ Rn be open, f : E → R be such that ∂jf(x)
exist and bounded on E for j = 1, 2, · · · , n. Then f is continuous on E.

Proof. We just make use of the mean value theorem in one variable. Let

us set v0 = 0 and define vk =
k∑
j=1

vj ej where v = (v1, · · · , vn). Note that

‖vk‖ ≤ ‖v‖ for k = 1, 2, · · · , n. Consider f(x+v)−f(x) which can be written
as

f(x+ v)− f(x) =

n∑
j=1

f(x+ vj)− f(x+ vj−1).

Since vj = vj−1 + vjej , in view of mean value theorem applied to f as a
function of the jth variable we have

f(x+ vj)− f(x+ vj−1) = vj ∂jf(x+ vj−1 + θj vj ej)

for some 0 ≤ θj ≤ 1. As we are assuming that |∂jf(y)| ≤ C for all y ∈ E,
we get

|f(x+ v)− f(x)| ≤ C
n∑
j=1

vj ,

which clearly shows that f is continuous.

In the above proof, we observe that if ∂jf are further assumed to be
continuous then we can write

∂jf(x+ vj−1 + vj θj ej) = ∂jf(x) + rj(x, v).

Therefore,

f(x+ v)− f(x)−
n∑
j=1

∂jf(x)vj =
n∑
j=1

vj rj(x, v),

where rj(x, v)→ 0 as v → 0. Note that we can consider
n∑
j=1

∂jf(x)vj as the

image of v under a linear transformation. Thus defining Df(x) : Rn → R
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by Df(x)y =
n∑
j=1

∂jf(x) yj we have

f(x+ v)− f(x)−Df(x)v =
n∑
j=1

vj rj(x, v)

where ‖v‖−1
n∑
j=1

vj rj(x, v) → 0 as v → 0. This motivates us to make the

following definition.

Let E ⊂ Rn be open and f : E → Rm. We say that f is differentiable at
x ∈ E if there is a linear transformation Df(x) : Rn → Rm such that

f(x+ v)− f(x)−Df(x)v = r(x, v)

where ‖v‖−1 r(x, v) → 0 as v → 0. First of all we observe that if Df(x) is
defined then it is unique. Infact if A : Rn → Rm is another linear transfor-
mation such that

f(x+ v)− f(x)−Av = rA(x, v)

with ‖v‖−1rA(x, v)→ 0 as v → 0, then

r(x, v)− rA(x, v) = (A−Df(x))v.

Therefore, ‖v‖−1(A −Df(x))v → 0 as v → 0. Since A −Df(x) is a linear
transformation, the above is possible only when (A − Df(x))v = 0 for all
v ∈ Rn, that is, A = Df(x).

Let ẽj be the coordinate vectors in Rm. Then we can write f as f(x) =
m∑
i=1

fi(x) ẽi where fi : E → R are the components of f. With this notation

we have, under the assumption that ∂jfi are all continuous on E,

f(x+ v)− f(x) =
m∑
i=1

(fi(x+ v)− fi(x)) ẽi

which is equal to

m∑
i=1

 n∑
j=1

∂jfi(x)vj

 ẽi +
m∑
i=1

 n∑
j=1

vj rij (x, v)

 ẽi.

If we let Df(x) to stand for the linear transform which sends y into

m∑
i=1

 n∑
j=1

∂jfi(x)yj

 ẽi
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then, the above gives

f(x+ v)− f(x)−Df(x)v = r(x, v)

where the remainder, given by

m∑
i=1

 n∑
j=1

vj rij (x, v)

 ẽi,

satisfies ‖v‖−1 r(x, v)→ 0 as v → 0.

Let us say that f ∈ C1(E) if Df(x) exists at every x ∈ E and is a contin-
uous function from E into L(Rn,Rm), the space of all linear transformations
from Rn into Rm. This space can be given the metric d(T, S) = ‖T − S‖
where ‖T‖ is the norm defined by

‖T‖ = sup
‖x‖≤1

‖Tx‖.

We have almost proved the following result.

Theorem 2.4.2. A function f : E ⊂ Rn → Rm, belongs to C1(E) if and
only if ∂jfi, 1 ≤ i ≤ m, 1 ≤ j ≤ n are all continuous on E.

Proof. Note that the m×n matrix (∂jfi(x)) defines a linear transformation
from Rn into Rm. If all the partial derivatives ∂jfi are continuous, the above
calculations preceding the theorem show that Df(x) is given by the matrix
(∂jfi(x)). And hence f is differentiable and the continuity of x 7→ Df(x)
follows from that of ∂jfi.

To prove the converse we observe that

f(x+ tej)− f(x)−Df(x)tej = r(x, t)

which gives

m∑
i=1

(fi(x+ tej)− fi(x)− t(Df(x)ej , ẽi)) ẽi =
m∑
i=1

(r(x, t), ẽi)ẽi.

The existence of Df(x) shows that

lim
t→0

fi(x+ tej)− fi(x)

t
= (Df(x)ej , ẽi)

which means ∂jfi(x) exists and is given by (Df(x)ej , ẽi). This proves the
theorem completely.
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Chapter 3

The space of integrable
functions

3.1 Riemann integral of continuous functions

Consider the differential operator D : Cω(a, b) → Cω(a, b). This operator is
not one to one as it kills all constant functions. However, it is onto: this
means given f ∈ Cω(a, b) the differential equation Du = f has a solution.
Indeed, it has infinitely many solutions since u + C,C ∈ C is a solution

whenever u is. If f(x) =
∞∑
j=0

aj (x − y)j is the expansion of f around

y ∈ (a, b) then a solution of the above equation is given by

u(x) = Sf(x) =

∞∑
j=0

aj
j + 1

(x− y)j+1.

Note that this particular solution has the additional property that u(y) = 0.
This means that the initial value problem

Du = f, u(y) = 0

has the unique solution

u(x) =
∞∑
j=0

aj
j + 1

(x− y)j+1,
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whenever f is given by the expansion

f(x) =

∞∑
j=0

aj (x− y)j .

We are interested in solving the above initial value problem when f
is merely a continuous function. That is we are interested in finding a
C′ function such that Du = f. This can be done on every closed interval
I ⊂ (a, b) which contains y.

When f = p is a polynomial then the function Sp is again a polynomial:

if f(x) =
n∑
k=0

ak x
k, then Sp(x) =

n∑
k=0

ak
k+1 x

k+1. Let us call this P (x). Then

the unique solution of Du = p, u(y) = 0 is given by

u(x) = P (x)− P (y).

To proceed further let us prove an elementary

Lemma 3.1.1. Let I be a closed interval containing y. Then there exists
C = CI > 0 such that

‖SI p‖ ≤ CI‖p‖

where SI p is the unique solution of Du = p, u(y) = 0 and ‖·‖ is the norm
in C(I).

Proof. As observed above,

SI p(x) = P (x)− P (y) = P ′(ξ)(x− y)

by mean value theorem. (Here ξ lies between x and y). Since P ′(ξ) = p(ξ)
we get

|SI p(x)| ≤ |x− y||p(ξ)| ≤ (β − α)‖p‖

for all x where I = [α, β]. This proves the lemma.

If f ∈ C(I) then by definition there exists a sequence of polynomials (pn)
such that pn → f in C(I). In view of the above lemma, if un = SI pn, we
have

‖un − um‖ ≤ CI‖pn − pm‖

and hence (un) converges to a continuous function u on I. As Dun = pn
converges uniformly on I, by a theorem we have proved in the previous
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section we get u is differentiable and Du = lim
n→∞

Dun = f. It is obvious

that u(y) = 0. Thus u = lim
n→∞

un is the unique solution of the initial value

problem Du = f, u(y) = 0.

The result of the previous lemma remains true for all continuous func-
tions.

Proposition 3.1.2. Let f ∈ C(I) and y ∈ I. Then the solution u of the
initial value problem satisfies ‖u‖ ≤ C‖f‖.

Proof. Take a sequence (pn) of polynomials converging to u uniformly. Since
‖un‖ ≤ C‖pn‖, we can choose N large enough so that

|u(x)− un(x)| ≤ ε

2
, ‖pn − f‖ ≤

ε

2

for n ≥ N. We have

|u(z)| ≤ |u(x)− un(x)|+ |un(x)|
≤ |u(x)− un(x)|+ C‖pn − f‖+ C‖f‖
≤ (C + 1)ε+ C‖f‖.

As ε > 0 is arbitrary we get the result.

We now make the following definition: If f is continuous on I = [α, β]
we define

x∫
α

f = u(x), x ∈ I

to be the unique solution of the problem

Du = f, u(α) = 0.

u(β) =
β∫
α
f is called the Riemann integral of the continuous function f over

the interval I. We use the alternative notation
β∫
α
f(t) dt more often.

Here are some important properties of
β∫
α
f(t) dt.
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(1) The integral is linear as a function of f :

β∫
α

(f + g)(t) dt =

β∫
α

f(t) dt+

β∫
α

g(t) dt

β∫
α

λf(t) dt = λ

β∫
α

f(t) dt

for f, g ∈ C(I), λ ∈ C.
(2) The integral preserves nonnegativity of f : that is

Proposition 3.1.3.
β∫
α
f(t) dt ≥ 0 whenever f ≥ 0.

Proof. Look at u(x) =
x∫
α
f(t) dt which satisfies Du(x) = f(x), u(α) = 0.

As f(x) ≥ 0, u is increasing and as u(α) = 0, u(x) ≥ 0 for all x ∈ I. This
proves the proposition.

(3) Fundamental theorem of Calculus

Theorem 3.1.4. If f ∈ C(I) is the derivative of another function, say F
then

β∫
α

f(t) dt = F (β)− F (α).

Proof. By definition u(x) =
x∫
α
f(t) dt is the unique solution of Du = f,

u(y) = 0. As v(x) = F (x) − F (α) also solves the same equation we get
u = v. Hence

β∫
α

f(t) dt = u(β) = v(β) = F (β)− F (α)

as claimed.

(4)
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Theorem 3.1.5. For every f ∈ C(I),

|
∫
I

f(t) dt| ≤
∫
I

|f(t)| dt.

Proof. First assume f is real valued. Choose c = ±1 in such a way that

c

∫
I

f(t) dt = |
∫
I

f(t) dt|.

Since
∫
I

cf(t) dt = c
∫
I

f(t) dt we have

|
∫
I

f(t) dt| =
∫
I

cf(t) dt.

and cf ≤ |f | or |f | − cf ≥ 0 so that∫
I

(|f | − cf)(t) dt ≥ 0

i.e., c
∫
I

f(t) dt ≤
∫
I

|f(t)| dt as desired.

If f is complex,
∫
I

f dt may be complex and choose c complex so that

c

∫
I

f(t) dt = |
∫
I

f(t) dt|.

To do this we need the polar representation of complex numbers which we
haven’t done but we will do it soon.

(5) Change of variables formula

Theorem 3.1.6. Let I = [α, β], J = [γ, δ]. Let ϕ : [α, β] → [γ, δ] be a
homeomorphism which is C′. Then for any f ∈ C(J),

δ∫
γ

f(t) dt =

β∫
α

f(ϕ(t)) ϕ′(t) dt.
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Proof. As f ◦ϕ, ϕ′ are continuous all the integrals involved are defined. Let

v(s) =
s∫
γ
f(t) dt, s ∈ J and define u(x) = v(ϕ(x)). Then by chain rule u

satisfies
Du(x) = f(ϕ(x)) ϕ′(x), u(α) = 0.

By uniqueness,

u(x) =

x∫
α

f(ϕ(t)) ϕ′(t) dt.

Taking x = β and noting that ϕ(β) = δ we get

β∫
α

f(ϕ(t)) ϕ′(t) dt =

δ∫
γ

f(t) dt.

This proves the theorem.

(6) Consider ϕ : [0, 1]→ [α, β] given by ϕ(t) = α+ (β − α)t which satisfies
the conditions of the above theorem. Hence for any f ∈ C[α, β],

β∫
α

f(t) dt =

1∫
0

f(α+ (β − α)t) (β − α) dt

i.e.,

β∫
α

f(t) dt = (β − α)

1∫
0

f(α+ (β − α)t) dt.

Therefore, in order to calculate
∫
I

f(t) dt we can always assume that I =

[0, 1].

(7) Integration by parts

Proposition 3.1.7. If f, g ∈ C′(I) then (if I = [α, β])

β∫
α

f ′g dt+

β∫
α

fg′ dt = f(β)g(β)− f(α)g(α).

Proof. D(fg) = f ′g + g′f which means

x∫
α

(f ′g + g′f) dt =

x∫
α

(fg)′ dt.
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By fundamental theorem of calculus

x∫
α

(fg)′ dt = (fg)(x)− (fg)(α).

This proves the proposition.

(8) Let us do one calculation

Lemma 3.1.8. For any n ∈ N, 0 ≤ k ≤ n

1∫
0

xk (1− x)n−k dx =
k!(n− k)!

(n+ 1)!
.

Proof. Let an,k =
1∫
0

xk (1 − x)n−k dx. Take f(x) = 1
k+1 xk+1 and g(x) =

(1− x)n−k in the formula for integration by parts. Then

an,k =
n− k
k + 1

1∫
0

xk+1 (1− x)n−k−1 dx =
n− k
k + 1

an,k+1

or an,k =
k

n− k + 1
an,k−1.

This gives an,k =
k

n− k + 1
· k − 1

n− k + 2
· · · 1

n
· an,0.

As an,0 =
1∫
0

(1− x)n dx =
1∫
0

xn dx = 1
n+1 we get the lemma.

(9) Riemann sums

If f ∈ C[a, b], then
b∫
a
f(t) dt is approximated by

b∫
a
pn(t) dt where (pn) is

a sequence of polynomials converging to f uniformly. The approximating

sequence
b∫
a
pn(t) dt takes a particularly simple form if we use Bernstein

polynomials in place of pn. So, let us assume a = 0, b = 1 and consider

Bnf(x) =
n∑
k=0

f

(
k

n

)(
n
k

)
xk (1− x)n−k
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which converges to f uniformly on [0, 1].

1∫
0

f(t) dt = lim
n→∞

1∫
0

Bnf(t) dt.

But in view of the Lemma above

1∫
0

Bnf(x) dx =
n∑
k=0

f

(
k

n

) (
n
k

) 1∫
0

xk (1− x)n−k dx

=

n∑
k=0

f

(
k

n

)
n!

k!(n− k)!

k!(n− k)!

(n+ 1)!
=

1

n+ 1

n∑
k=0

f

(
k

n

)
.

Note that the points { kn : k = 0, 1, 2, · · · , n} form a partition of [0, 1] :

[0, 1] =
n−1⋃
k=0

[
k
n ,

k+1
n

]
and the sums

n−1∑
k=0

f

(
k

n

)
· 1

n
=

n−1∑
k=0

f

(
k

n

)
·
(
k + 1

n
− k

n

)
and called the lower Riemann sums and

n∑
k=1

f

(
k

n

)
· 1

n
=

n∑
k=1

f

(
k

n

)
·
(
k

n
− k − 1

n

)
are called upper Riemann sums. And

1∫
0

f(t) dt = lim
n→∞

1∫
0

Bnf(t) dt = lim
n→∞

n−1∑
k=0

f

(
k

n

)
1

n

= lim
n→∞

n∑
k=1

f

(
k

n

)
1

n
.

Thus we have shown that when f is a continuous function on [0, 1] then

1∫
0

f(t) dt = lim
n→∞

n−1∑
k=0

f

(
k

n

)
1

n
.

Note that P = {0, 1
n ,

2
n , · · · ,

n−1
n , 1} forms a partition of [0, 1] and 1

n =
k+1
n −

k
n is the length of the kth subinterval [ kn ,

k+1
n ]. We can generalise
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the above sum by considering arbitrary partitions of [0, 1]. Let P = {x0 =
0, x1, · · · , xn = b}, xk < xk+1 be any partition of [a, b]. Given a continuous
function f on [a, b] we can consider the sum

R(P, f) =
n−1∑
k=0

f(xk) (xk+1 − xk)

which we call the Riemann sum of f associated to the partition P. We
defined the norm of the partition N(P ) to be the maximum length of the
subintervals: N(P ) = max

0≤k≤n−1
(xk+1−xk). We would like to know if R(P, f)

converges to
b∫
a
f dt when N(P )→ 0. If that is the case, we can ask a similar

question when f is not necessarily a continuous function. If the answer is

affirmative then we have a definition of
b∫
a
f dt for not necessarily continuous

functions.

Let f ∈ C[a, b] be real valued and consider Mk = sup
x∈[xk,xk+1]

f(x) and

mk = inf
x∈[xk,xk+1]

f(x). Then it is clear that

L(P, f) ≤ R(P, f) ≤ U(P, f)

where L(P, f) and U(P, f) are the special Riemann sums called lower and
upper sums:

L(P, f) =

n−1∑
k=0

mk (xk+1 − xk), U(P, f) =

n−1∑
k=0

Mk (xk+1 − xk).

As f is a continuous function, we can find ξk, ηk ∈ [xk, xk+1] such that
Mk = f(ηk),mk = f(ξk). Thus,

U(P, f)−R(P, f) =
n−1∑
k=0

(f(ηk)− f(xk)) (xk+1 − xk)

R(P, f)− L(P, f) =
n−1∑
k=0

(f(xk)− f(ξk)) (xk+1 − xk).

Given ε > 0, by the uniform continuity of f, we can choose δ > 0 such that
|f(x) − f(y)| < ε

b−a whenever |x − y| < δ. Therefore, for any partition P
with N(P ) < δ we have the inequalities

U(P, f)−R(P, f) < ε; R(P, f)− L(P, f) < ε.
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Thus we see that if R(P, f) converges to a limit then both U(P, f) and
L(P, f) converge to the same limit and consequently U(P, f)−L(P, f) con-
verges to 0. Conversely, it turns out that if U(P, f)−L(P, f) converges to 0
then they have a common limit and consequently, R(P, f) also converges to
the same limit.

Thus it is reasonable to make the following definition: We say that a
bounded function f on [a, b] is Riemann integrable (we write f ∈ R[a, b]) if
U(P, f) − L(P, f) → 0 as N(P ) → 0, i.e., given ε > 0, there exists a δ > 0
such that U(P, f)− L(P, f) < ε whenever N(P ) < δ.

Theorem 3.1.9. Suppose f ∈ R[a, b]. Then

sup
P
L(P, f) = inf

P
U(P, f) = λ (say).

Consequently, limR(P, f) = λ.

Proof. Note that for any partition, L(P, f) ≤ U(P, f). If P and Q are two
partitions, then it follows from the definition that L(P, f) ≤ L(P ∪ Q, f),
U(P ∪Q, f) ≤ U(Q, f). Consequently, L(P, f) ≤ U(Q, f) for any two parti-
tions. This leads to the inequality

sup
P
L(P, f) ≤ inf

P
U(P, f).

Since f ∈ R[a, b], given ε > 0 we can find a partition Q such that U(Q, f)−
L(Q, f) < ε. Hence we have

inf
P
U(P, f)− sup

P
L(P, f) ≤ U(Q, f)− L(Q, f) < ε

which proves inf
P
U(P, f) = sup

P
L(P, f). It remains to be shown that

lim
N(P )→0

U(P, f) = λ = lim
N(P )→0

L(P, f).

In order to do this we need the following lemma.

Note that when P ⊂ Q are two partitions then U(Q, f) ≤ U(P, f)
(L(P, f) ≤ L(Q, f)). The lemma says that U(Q, f) (resp. L(Q, f)) cannot
be very much smaller (resp. larger) than U(P, f) (resp. L(P, f)).

Lemma 3.1.10. Let f(x) ≤ M on [a, b]. If P ⊂ Q are two partitions and
if Q ∩ P c has m points then

L(Q, f) ≤ L(P, f) + 2mMN(P ), U(P, f) ≤ U(Q, f) + 2mMN(P ).
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Proof. We prove the lemma for upper sums. The proof is similar for lower
sums.

Consider the case when Q = P ∪ {c} where xk < c < xk+1. Then it
follows that

U(P, f)− U(Q, f) = Mk(xk+1 − xk)−Ak(c− xk)−Bk(xk+1 − c)

where Ak = sup
x∈[xk,c]

f(x) and Bk = sup
x∈[c,xk+1]

f(x). Thus

U(P, f)− U(Q, f) = (Mk −Bk)(xk+1 − c) + (Mk −Ak)(c− xk).

Since |Mk −Bk| ≤ 2M, |Mk −Ak| ≤ 2M we obtain

U(P, f)− U(Q, f) ≤ 2M(xk+1 − xk) ≤ 2MN(P ).

This proves the lemma when m = 1.

If m > 1, let P = P0 ⊂ P1 ⊂ · · · ⊂ Pm = Q be the partitions where Pj+1

is obtained from Pj by adding an extra point. By the above, we know that

U(Pj , f)− U(Pj+1, f) ≤ 2MN(P ),

and hence

U(P, f)− U(Q, f) =

m−1∑
j=0

U(Pj , f)− U(Pj+1, f) ≤ 2mMN(P ).

Let us return to the proof of the theorem. Since λ = inf
P
U(P, f), given

ε > 0 we can choose a partition P0 such that

U(P0, f) < λ+
ε

2
.

If P is any partition with N(P ) < δ, δ to be chosen in a moment, we have
by the lemma

U(P, f) ≤ U(P ∪ P0, f) + 2mMδ

where m = ](P ∪ P0) ∩ P c ≤ ]P0. Thus we have

λ ≤ U(P, f) ≤ U(P ∪ P0, f) + 2mMδ ≤ U(P0, f) + 2mMδ.

If we choose δ such that 2mMδ < ε
2 then it follows that

λ ≤ U(P, f) < λ+ ε.


