LECTURE NOTES ON CALABI’'S CONJECTURES AND
KAHLER-EINSTEIN METRICS

VED V. DATAR

ABSTRACT. These are lectures notes of a mini course on Calabi’s conjectures
and Kaéhler-Einstein metrics, given as part of the Advanced Instructional
School (AIS) in Riemannian geometry organized at Indian Institute of Science
(IISc) in July 2019.
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1. LECTURE-1: CALABI’S CONJECTURES

1.1. A review of basic K&hler geometry. Let (M,w) be a compact, connected
Kahler manifold. Then locally, the Kéahler form is given by

w = \/—1gi3dzi AdZ,
where {g;7} is a hermitian symmetric, positive definite matrix, such that g5, =
9kji» where semi-colons denote derivatives. These conditions are of course equivalent

to w being a real, closed, positive (1,1) form. Since w is a closed, it determines a
1
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cohomology class [w] € H?(M,R). We say that a cohomology class a € H?(M,R)
is Kahler, and write > 0, if it contains a K&hler form. The set of all Kahler
classes

Car = {a € H*(M,R) | a > 0}
is an open, convex cone in the finite dimensional vector space H?(M,R), and is
called the Kdhler cone of M. We need the following fundamental result on the
structure of the Kahler cone.

Lemma 1.1 (v/—190-Lemma). Let w; and wo be real, closed (1,1) forms such that
[wa] = [w1]. Then there exists a ¢ € C°(M,R) such that

Wo = w1 +V —185(,0.

As a consequence, we can write

Cor {d closed positive real (1,1) forms}
M Image(y/—100) '
There is natural almost complex structure J : TM — TM, J?> = —id given

locally by 5 5 5 5

where z! = z° + y/—1y%. The pair (J,w) determines a Riemannian metric on M by
g(u,v) = w(u, Jv).
The Riemannian Ricci curvature is then given by Regy(u, v) = Ric(w)(u, Jv), where
Ric(w) = —v/—100 logw™

is the Ricci form. Since w™ defines a hermitian metric on the anti-canonical line
bundle K7},, Ric(w) being the corresponding curvature form is a representative of
the first Chern class ¢ (M) := ¢1(K73,).

Conjecture 1.2. (Calabi) Conversely, every real (1,1) form in ¢;(M) is the Ricci
for of some Kdhler form.

1.2. Prescribing Ricci curvature. Calabi’s conjecture was solved in 1978 by
Yau.

Theorem A (Yau, [9]). Given any p € c1(M) and any a € Cpr, there exists an
w € «a such that
Ric(w) = p.

This immediately had some far reaching consequences. Due to the lack of space,
we only mention one particular spectacular consequence. But first we state the
following elementary consequence.

Corollary 1.3. Let M be a compact Kdhler manifold. Then M has a K—"ahler
metric with positive (resp. zero and negative) Ricci curvature if and only if ¢1 (M)
is positive (resp. zero and negative).

This in turn has various topological consequences. For instance, by an application
of Bonnet-Myers, any manifold with ¢; (M) has a finite fundamental group.

Corollary 1.4. There exist infinitely many non-flat Riemannian manifolds (M, g)
with Reg = 0.
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Remark 1.5. Riemannian manifolds with Ricci curvature identically zero are
called as Ricci flat manifolds. Before Yau’s solution of the Calabi conjecture, not
even a single example of a non-flat, compact Ricci flat manifold was known. Note
that a flat manifold of dimension m has R™ as it’s universal cover. In particular,
if a flat manifold is compact, it cannot be simply connected.

Proof of Corollary 1./. Let P be a homogenous polynomial in C**! of degree n+1,
such that

{5 =0} = o)

Then Mp = {[£%,--- ,£"] € P" | P(°,--- ,£€") = 0} is a complex submanifold of P"
of dimension n — 1. An infinite family of examples is provided by P(£Y,--- ,&7) =
(€0)n+L oo (¢m)"FL If wp is the restriction of the Fubini-Study metric to Mp,
then Lemma 1.6 below shows that

Ric(wp) = —V—100%,
for a certain smooth function ¢ on Mp. In particular, ¢;(Mp) = 0. By Theorem
A, there exists a Ricci flat metric on Mp. Next, by Lefschetz hyperplane section
theorem the fundamental group 71 (Mp) = w1 (P") = {0} if n > 2. Hence Mp is
simply connected whenever n > 2 (when n = 2, Mp is simply an elliptic curve, and

clearly not simply connected). But then by Remark 1.5, Sec, cannot be identically
Zero.

O

Lemma 1.6. Let P be a homogenous polynomial in C™"*' of degree d, such that
OP
n _— = frd
ol e =0} = {0}
Then
(1) Mp = {[&%,--- ,€"] € P | P(£9,--- ,&™) = 0} is a complex sub-manifold
of P of dimension n — 1.
(2) If wp is the restriction of the Fubini-Study metric to Mp, then
Ric(wp) = (n+ 1 — d)wp — /109,
where )
sl
= log ( €201 )
s a smooth function on 1.
(3) In particular, cy(M) = (n+1—d)cy (O[Pn(l)‘M ) and hence is positive, zero

or negative, depending on whether d < n + 1, IZZ =n+1lord>n+1.

Definition 1.7. A compact Kahler manifold is said to be
(1) Fano if ¢;(M) > 0,
(2) Calabi-Yau if ¢1(M) = 0 and
(3) General Type if ¢;(M) < 0.

Remark 1.8. Calabi-Yau manifolds are extensively studied by geometer and string
theorists alike. We refer the interested reader to the excellent survey [10] article by
Yau on the geometry of Calabi-Yau manifolds. Note that the vanishing of ¢; (M)
implies that Ky, is topologically trivial. An interesting corollary to Theorem A is
that some power K, is also holomorphically trivial.
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1.3. Kahler-Einstein metrics.

Theorem 1.9 (Uniformization theorem). Given any compact oriented Riemannian
surface (X2, go), there exists a metric § in the conformal class [go] = {e%go | u €
C®(Z,R)} with constant Gauss curvature sgn(x(M)), where x(M) is the Euler
characteristic.

Recall that there exist isothermal coordinates with respect to which
go = h(dx? + dy?).

The isothermal coordiantes determine an integrable almost complex structure J on
T with holmorphic coordinate z = = + /—1y. Moreover the complex structure
J only depends on the conformal class [go] and not on the particular metric go.
The area element w, = dA, of any g € [go] is then a K&hler metric on M, and the
uniformization theorem is then equivalent to the statement that

Ric(wg) = sgn(x(M)) - wy.
This motivates the next definition.

Definition 1.10. A Kéihler metric w on M is said to be Kahler-Einstein if there
exists a A > 0 such that Ric(w) = \w.

Remark 1.11. (1) (Rescaling) If w is a Kahler-Einstein metric with A # 0,
then @ := |A\|w is also KE with
. A
Ric(w) = B @,
and so without any loss of generality we can assume A\ = 41 or 0.
(2) (Topological restriction) If w is KE, then clearly A[w] = ¢1(M), and hence
the chern class must either vanish or must have a sign.

AlaM) |  [w]
-1 <0 —Cl(M)
0 =0 Cym
1 >0 Cl(M)

Theorem B. (1) (Yau, [9]) If ca(M) = 0, then for any a € Cyy, there exists
an w € a such that Ric(w) = 0.
(2) (Aubin [1], Yau [9]) If c1(M) < 0, then there exists a metric w in — c1 (M)
such that Ric(w) = —w.

Corollary 1.12. If P is a homogenous polynomial C**1 of degree d, such that
OP

{56 {0}

Then Mp = {[¢°,--- €] € P | P(&%,--- &™) = 0} admits a Kdihler-Einstein

metric with negative scalar curvature if d > n + 1.

n
=0
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2. LECTURE-2: ANALYTIC PRELIMINARIES

For this lecture, we let (M™, w) be a compact Kéhler manifold. At times, we
will be concerned only with the underlying Riemannian structure (M™, g), where
m = 2n.

Definition 2.1. Let f € C>(M,R).
(1) The complex gradient Vf : M — T'(M,TM9 M) is defined to be
525 0
0z 0z
(2) The complex Lapalcian is defined to be

V=g

Af =V, V'f = g78,0;f.

(3) Given a (1,1) form o = v/—1ay3dz" A dz?, we define the trace with respect

to w by
troa = Apa = gﬁaij.
Remark 2.2. (1) The Riemannian gradient is characterised by the property
that

X(f) = g(gradf, X)

for all vector fields X, and in fact is precisely half the real part of the
complex gradient. More precisely,

Vf= %(gradf —/—1Jgradf).

In particular |V f|? = |grad f|?/2. We also have that the Laplace-Beltrami
operator Ay g is twice the complex Laplacian.

(2) Our Laplacian is the so-called analysts Laplacian, and is a negative operator,
as can be seen from the following integration by parts formula

/ Afpw™ = —/ Vf-Vpuw".
M M
(3) We have the identities

aAw' L
Apao=n——m
wa=n o
B V=100f AWt
Af=n o
VP = n\/—laf ANOf Awnt

w

Proposition 2.3. (Mazimum principle)
(1) Let f € C*(M,R). If f has a local mazimum at p € M, then

V=100 f(p) < 0.

In particular, Af(p) <0.
(2) Moreover if f € C?*(M,R) such that \/—100f = 0, then f is a constant.
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Proof. (1) From the maximum principle from calculus, the real Hessian at a
local max is non-positive. From this, proposition follows when n = 1, since
if t = u + v, then

0%y 1,0%) 0%y
o) =1 (55 + 55 ) )
otot 4\ Ou v
In general, let £ € T;’OM, & # 0, and consider ¥(t,t) = f(p + t&,p + t€).
Then 1) has a local max at 0, and so

Py Pf
0= 516t = Gzam PEE

(2) Now suppose v/—199f = 0, and w is any Kéhler metric on M, then
0= [ frwrt=— [ VETorAGs nwtt = —n [lafPan
M M

Hence f is holomorphic, and thus a constant.

<0.

O

2.1. Schauder estimates on R". For this section, we let @ C R™ be a bounded,
connected, open set.

Definition 2.4. Let f € C*(M,R). For any «a € (0,1), we define the Holder semi

norm by
€T —
[flce) = sup M7
eyeQ, aty [T — Y

and the Holder C*“ norm by
1 fllcre) == sup |[DP[lco + sup [D” flea (o,
|B1<k |B1=k

where 8 = (B1,-++,fm) is a multi-index, and D? is the corresponding partial
derivative of order |3| = B1 + -+ + Bm. We then define the Holder space C*@(Q)

as
CFo(M,Q) == {f € C*(Q) | ||f||cr.a(ar) < oo for all Q' CcC Q}.

Note that C*<(M, ) is not a Banach space.

Definition 2.5. A linear second order partial differential operator is an operator
L:C>®(M,R) — C*>°(M,R) that can be written as
0% Ou
Lul =a" ——— +b"— + cu,
[u] Oxtxd + or? +
where a¥,b',c € C°(M,R). We say that L is elliptic if the matrix a* is positive
definite everywhere in 2.

Example 2.6. If g is any Riemannian metric on Q, then A, is an elliptic operator.

Indeed,
2

OxtoxI

The key result we need is as follows.

A, =g" + lower order terms.

Theorem 2.7 (Elliptic regularity and local Schuader estimates). Let ' CC €.
Suppose a € (0,1) and k € N. Suppose further that

(1) L is an elliptic 2" order differential operator on 2 with a®,b', c € C**(Q).
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(2) u € C?(Q) satisfies Lu € Ck.
Then u € C*+2:%(Q), and moreover, we have the estimate
[ullgriza@y < C(|\LU||Ck>a(Q) + ||UHCO(Q)>,

where C depends only on the Holder norms of the coefficients, the domains Q, €,
and the constant of ellipticity A.

Remark 2.8. The term ||u|[co(q) is needed on the right, as can be seen by taking
L = A and u an arbitrarily big constant.

2.2. Elliptic operators on compact Riemannian manifolds. Now let (M, g)
be a compact Riemannian manifold of dimension m. We fix an open cover M =
ﬂé\f:lUj such that

<24

1
551']' < 9ij 0, i

and a partition of unity {p,} subordinate to {U;}.
Definition 2.9. For any f € C*(M), we define
1flloweg) = D _llpillowe ),
where Holder norms on the right are the quual Holder norms in Euclidean domains.
We then define the C*“-Hélder space by
Ch(M) = {f € C*(M) | [|fllcr.aq) < 00}

Remark 2.10. Even though the Holder norm depends on the metric, the Hélder
spaces C*(M) themselves are independent of the metric.

Proposition 2.11. (1) For any k € N and any a € (0,1), (C**(M) < || -
l|c.0(g)) i a Banach space.

(2) For any o/ < a, C**(M) c C* (M) is a compact embedding. That
is, if fi is a sequence of functions in C**(M) with [ fllckagy < C for
some uniform constant C, then there exists a sub-sequence f;; converging
n || [lgr.ar (g to a limiting function f € CFe (M),

Definition 2.12. A 2"¢ order differential operator is a map L : C°° (M) (M) that
can be written as

Lu= aijViVju + bV, + cu,
where V is the Levi-Civita connection, a”/ and b’ are continuous sections of TM ®
TM and TM respectively and u € C°(M). We say L is elliptic if a”/ is a positive
definite form.

Definition 2.13. Given L, the adjoint L* is defined as the unique second order
differential operator such that

/ LfpdVy = / fL*pdVy,
M M
for all p € C°(M).
Lemma 2.14. If L = (LijVZ'Vj +b'V; +c, then
L*¢ =a"V;Vp+ (V;a" + V;a'" — b")Vp+ (V;V;a" — Vb + c)p.
In particular, L is elliptic if and only if L* is elliptic.
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Example 2.15. The Laplace-Beltrami operator

Ay =g"V,;V;
is an example of an elliptic second order differential operator. In fact it is also self
adjoint, that is A} = Ag.

Definition 2.16. (Weak solutions) We say that u € L?(M) solves Lu = f weakly,
if for all p € C(M),

/)Mf<pdVg = /uL*godVg.
Of course if u € C? solves Lu = f, then it also solves this equation weakly.

Theorem 2.17. (Regularity and Global Schauder estimates) Suppose f € C**(M)
and u € L*(M) satisfies Lu = f weakly. Then u € C**2%(M) (or more precisely,
this holds after possibly modifying u on a measure zero set), and

ullwsagg) < C(Iflleme o + llullo )-
In particular,
ker(L) = {u € L? | Lu = 0 weakly} C C>(M).

Theorem 2.18. (Ezistence) In the same setting as the above theorem, if f €
Ck:2(M), then there exists a unique u € C*¥T2Y(M) Nker(L)* solving Lu = f if
and only if f € ker(L*)*. In particular

L: C*2(M) Nker(L)* — C** (M) Nker(L*)*
is an isomorphism.
We need the following corollary in our proof of the Calabi conjecture.
Corollary 2.19. Consider the equation
(*) Agu+du = f.
(1) If A\ =0, then

A, : {ue O | / wdV, = 0} — {f € CH*(M) | / fav, = o}
M M

s an isomorphism.

(2) If A <0, then Ay + X : C*+29(M) — C**(M) is an isomorphism.
2.3. Poincare and Sobolev inequalities.

Theorem 2.20. Let (M™,g) be a compact Riemannian manifold. There exists
constants Cs and Cp such that for any f € C*(M,R),

(1) (Soboelv ienquality)

([ nisan) ™ <os( [ wseav+ [ fav,)

(2) (Poincare inequality) Iff= % Jas fdVy is the average of the function f on
M, then

/(f—f)QdVQSCp/ |V £2dV,.
M M
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Remark 2.21. Here Cs and C'p denote the best possible constants for which the
above inequalities hold, and are referred to as the Sobolev and Poincare constants
of (M, g) respectively. The Poincare constant Cp is in fact precisely the inverse of
the first non-zero eigenvalue A\; of —A,. This follows from the Rayleigh quotient
characterisation of eigenvalues

V£|?dv,
)\1 = ll’lf R 7fM | £| g
feEC>=(M,R), f=0 fM f?dvy
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3. LECTURE-3: COMPLEX MONGE-AMPERE EQUATIONS

Recall that our goal is to solve the following equations.

(1) Given p € ¢;(M), real and (1,1) form, and any Kéahler class a € Cy, find
w € a such that

Ric(w) = p.
(2) Solve
Ric(w) = Aw.
We can combine the equations into a single twisted KE equation
(t-KE) Ric(w) = Aw + p,

We seek solutions w in a given Kahler class a € Cy. Then necessarily [p] €
caa(M) = da. If & € « is a fixed background metric, by the v/—199-lemma, there
exist functions F, ¢ € C*°(M,R) such that

Ric(&) = A& + p+ V—100F
w=0o+V—-100¢.
Then (t-KE) is equivalent to the equation

B T e =

By Lemma 2.3, it follows that solving (t-KE) is then equivalent to solving the
following complex Monge-Ampere equation.

(& + /—=100p)" = el'"=regn
(CMA) W= ++/—100p > 0

(A=0) supp; =0
When )\ = 0, the extra normalisation is needed in order to obtain a priori estimates.
For instance, we would need to obtain uniform CC-estimates on solutions to the
above equation (uniform in the sense of only depending on ||F||co and (M,w); cf.
Proposition 4.3). Now, if ¢ is a solution, ¢ + ¢ will also be a solution for any
constant ¢, but with a C%-norm that goes to infinity as ¢ — co. Moreover, if A = 0,

there is also an additional necessary condition for existence of solutions. To see
this, integrating both sides of (CMA), we obtain

[ rer= | oo v [ o

where we used Stokes’ theorem in the second equality.

Theorem C. (1) (Yauw) If \ =0, (CMA) has a solution ¢ € C(M,R) if and

only if
/ eFLD”:/ w™.
M M

(2) (Yau, Aubin) If X < 0, then (CMA) has a solution ¢ € C*°(M,R).
The uniqueness of such solutions was proved by Calabi.
Theorem 3.1 (Calabi). If A <0, the solutions to (CMA) are unique.

Proof. Suppose @1 and sy are two solutions to (CMA). We let w; = & + /—199¢;
and ¥ = w3 — 1.



LECTURE NOTES ON CALABI'S CONJECTURES AND KAHLER-EINSTEIN METRICS 11

e Case-1. A < 0. Then % solves the equation
(w1 +V=190)" = e MWl

If p is a maxima of 1, then by the maximum principle v/—199%(p) < 0,
and so

e Pt = () + V=1991)" < W},

and hence —A(p) < 0 or equivalently (since A < 0) ¢(p) < 0. This shows
that pa(x) < ¢1(x) for all z € M. By symmetry, the reverse is also true
and we obtain that ¢, = pq.

e Case-2. A = 0. Now v solves the equation

(w1 +V=1809)" = Wy,

Subtracting the two sides, multiplying by ¢ and integrating, we obtain

0= / Bl(wn + vV IOBY)" — i
M

n—1
/ PV =190y A Z wh Awl
M

=0

n—1
= 7/ V—=10¢ A 0P A Zw% Awlt
M s

IN

—/ V=10 AP Awi Tt
M

—n~! / V192w,
M

where we used Lemma 3.2 below in line 4 and Remark 2.2 in line 5. Since
the right side is always non-positive, this forces ¥ to be a constant. But
since sup,; @1 = sup,, @2 = 0, this means that ¢; = 9.

([l
Lemma 3.2. For any positive real (1,1) forms w and @, and any ¢ € C*°(M,R),

V=IO ANOY Awd A@n—17d

a)n

> 0.

Proof. By applying a unitary transformation, we can assume that at a point p,
9i5 = /\1‘51‘5, Qz’j = 62’37

where each \; > 0. Then one can check that

V=1OY AN O Awd A@n—1-T

w

= D> WiPaa >0

4,01, 05
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3.1. Continuity method. For ¢ € [0, 1], consider
(@ -+ VET00p)" = et Aopm
(*+) Wy =@ +/—190¢; > 0
(A =0) sup,; o =0,
where ¢; are the constants
0, A<0
(Surem) (fypetam) =0
Note that e sWPmF < ¢, < e~ infum F_and that ¢ is continuous in ¢. Hence the

constants are pretty mild and do not cause any trouble in the estimates. We let

I:={te]0,1] | (*;) has a smooth solution}.

Cy =

The proof of Theorem C then consists of three parts

e Step-1. I is non-empty. This is trivial since ¢ = 0 is a solution to (*;) at
t =0 and hence 0 € I.

e Step-2. [ is open. This is accomplished via an inverse function theorem
and a perturbation argument.

e Step-3. I is closed. That is, if ¢t € I such that ¢, — T, then T € I.
This is done via obtaining a priori estimates and applying Arzela-Ascoli
theorem.

3.2. Openness.

Proposition 3.3. If (*;) has a smooth solution @, at t = to, then there exists an
€ > 0 such that (*;) has a smooth solution for all t € [tg —e,to +¢) N[0, 1].

The proof relies on the following infinite dimensional inverse function theorem.

Theorem 3.4 (Inverse function theorem (abbr. IFT)). Let X and Y be Banach
manifolds and let M : X —Y be a C' Frechet differentiable map. Suppose

(1) M(zo) = wo-

(2) DypgM : Ty X = Ty Y is an isomorphism of Banach spaces.
Then there exist neighbourhoods o € U C X and yo € V C M and a C* Frechet
differentiable map G : V. — U such that M(G(y)) =y for ally € V. In particular,
for every y € V, there exists a solution to M(x) =y in U.

Banach manifolds are essentially topological spaces that are locally homeomorphic
to isomorphic Banach spaces. A Frechet derivative is also defined in the usual way.
Even though we will not define these notions rigorously here, they will be self
evident when we use them in the proof below.

Proof of Proposition 3.3. We will give the complete proof in the case of A = 0. The
other case is even easier, and we only indicate the main steps.
e Case-1. A = 0. Then ¢, satisfies
((:J + v —185@)50)” = CtoetoF(:)n.
We set wy, = & + +/—1900¢py,. For |t — to| << 1, we wish to find a solution
to (*;) of the form ¢; = ¢y, + ;. Then ¢, solves (*;) if and only if 1, solves

(wiy +V—1000)™ = ie(t_tf’)ng).

Ctg
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So consider the mapping
(wiy +V/—1009)"
Wiy
Clearly M(0) = 1, and our goal is to solve M(¢;) = f; := Cc—fe(t_tU)F for
to
|t — to] << 1. The function spaces we need are as follows

CEO(M) = {1 € CRo(M) | /M bl =0}

M) =

CEO(M) = {f € Co (1) | /M fupt = / W),
Since

[ty = [ o+ vtover - [ i,

it is clear that M : C3** (M) — C®(M). Next, we observe that 7;,Cy* (M) =
C*(M) and T;CP* (M) = Cy®(M). To apply the inverse function theorem,
we need to compute the derivative.

Claim-1. DoM(n) = Ay, 9.

Proof.
d
ds SZOM(SW)
| (it s/ 100y)"
ds ls=0 wiy
d| wh+ sny/—=100n A w4+ O(s?)
ds ls=0 Wiy
ny/—1900m A wg)_l
Wiy

= Au,, 0.

DoM(n) =

(]

By Corollary 72, A, : ToCy® (M) = Cg**(M) — T;, Cy*(M) = Cy™(M)
is an isomorphism, and so by the inverse function theorem there exist
C1* neighbourhood V of f; and C%“ neighbourhood U of v such that
for all f € V, there exists a solution to M(v)) = f. In particular, there
exists a solution 1, to M(¢y) = fi if |t — to] << 1. Moreover, since the
inverse G is continuous, if we choose |t — tg| << 1, we can also ensure that
Wiy + /=100 > 0. We then put ¢ = ¢4, + Vs — sup (g1, + ¥¢). Clearly
¢y is a C3% solution to (*;). We claim that it is in fact smooth by using the
standard method of bootstrapping. Since this is a local issue, it suffices to
prove that the restriction to a coordinate neighbourhood is smooth. Taking
log on both sides of (*;) and differentiating with respect to 9y we obtain

(90)70:05(Onpr) = —(90)7 G0 + O H,

where H is some smooth function. Since ; is in C*%, and g; > 0, we also
have that g, !is in €. Hence the right hand side is also in C*®. Then
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Oy satisfies and elliptic equation with coefficients in C'* and right hand
side in C1'*. So by local Schauder estimates Oy is in C*<. Similarly 9y,
is in C**, and so g; is in fact in C*®. Going back, g; * is now in C>,
and hence ¢, in turn is in C®®, and so on. This shows that ¢, is in fact
smooth.

Case-2. A < 0. In this case we can in fact work with the usual (unnormalised)
Hélder spaces and define the map M : O3 — C1« by

( (wio + E&aw)n )

The linearisation is then A, + A, which is invertible by Corollary ?? since
A < 0. The rest of the argument, including bootstrapping, is identical.

M) =log + M.

O
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4. LECTURE-4: A PRIORI ESTIMATES

In the previous lecture, we set up a continuity method to prove Theorem C and
proved that I is an open set. To complete the proof of Theorem C, we need to
prove some a priori estimates. For the sake of notational convenience we drop the
parameter ¢, and instead consider the following Monge-Ampere equation:

(& 4+ V/=100¢p)"™ = eF' A
(CMA) wi=Q++/—100¢ > 0
(A=0) supp; ¢ =0

The estimates we need are as follows. All the geometric quantities with respect
to w are denoted by a hat.

Proposition 4.1. Let (M,o) be a compact Kahler manifold. Suppose a Kdihler
metric w satisfies

(1) Ric(w) = Aw+p
(2) A < w < A,
for some A > 0. Then there exists a constant C depending only on (M,®), A and
|Vpl2 such that
Vwl < C,
where V is the Levi-Civita connection with respect to @.

Proposition 4.2. Suppose ¢ € C®(M,R) solves (CMA). Then there exists
constants C, A > 0 depending only on (M,&), supy, |F| and inf pp AF such that

O—le—Ale=inta ¢) gy < 4y < CleAle—infar 0) g,
In particular, if ||¢||co < co, then w satisfies (2) with A = CeA%.
Proposition 4.3. If p € C°(M,R) solves (CMA) and \ < 0, then there exists C
depending on (M,&) and ||F||co such that
llellcoan < C.
Assuming these, we can now complete the proof of Theorem C.
Proof of Theorem C.. Recall the continuity method
(@ + V=100p)" = creT=AeQ"
(%¢) Wy 1=+ /=100, > 0
(A=10) sup,; ¢ = 0.

We have already proved that I := {¢ € [0,1] | (;) has a smooth solution} is non-
empty and open. To complete the proof, we need to show that this set is also
closed. Solet t, € I such that t;, — T, and let ¢y := @4, solve the equation (x;) at
t = tx. Then Propositions 4.1-4.3 imply that there exists a constant C' such that
IVw|2 < C. We then have

VAG|? < [VVV@i[? < [Vwf2 < C,

and hence,ifa € (0,1), we have ||Apg||ce (@) < C. But then by Schauder estimates
and Proposition 4.3 we have a uniform bound on ||pg||c2.(s)-

Claim. ||¢k||¢s.a(w) is uniformly bounded.
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Proof. 1t is enough to obtain local bounds. Taking log and differentiating equation
(*¢) with respect to 9,

(96,)79;0;(9a)or + MOapr) = —(96,)7 G150 + OuH,

where H is a given smooth function, depending on § and F. Since |[¢k||c2.a @)
is uniformly bounded, and g;, > A~!g, |9t ||ce(ey is uniformly bounded. By
Schauder estimates 9, has uniformly bounded C?%(@®) norm. One can argue
similarly for y¢k, and hence ¢y has uniformly bounded C*%(&) norms. O

Now, by Arzela-Ascoli, ¢ — @ € C3 (@) for some o < «a. Clearly or
satisfies (*;) at ¢ = T, and once again by a bootstrapping argument similar to the
one in the proof of Proposition 3.3, we have that o7 € C*°(M,R). |

4.1. C?-estimates. Note that since w and @& are positive, w < A® if and only if
trow < C. Hence it is sufficient to estimate trgw and tr,w. The key estimate we
need is the following.

Lemma 4.4. There exists constants B,C > 0 depending on (M,®), and inf 5 AF
such that

Alogtrow > —Btr,o — C.
Assuming this we can complete the proof of the required C2-estimate.

Proof of Proposition /.2. Since tr,& = n—Ay, from the Lemma if we set A = B+1,
we have

A(log trgw — Ap) > tr,o — C,
for some constant C. Suppose logtrgyw — Ap takes the maximum value at p € M,

then by the maximum principle, tr,&(p) < C. We can assume that & at p is
Euclidean, and w at p is diagonal with eigenvalues 0 < A\; < Ay < --- < \,. Then

1
— <C.
7 Ai

n

(2

In particular, there exists a constant cg such that A; > ¢y for each i. From the
equation w" = =A@ the determinant 117, )\; is uniformly bounded in terms
of ||F||co and e*%, and hence there is uniform upper bound \; < Ce=?¢®) In
particular, trow(p) < Cne=*¢®),

But then, since p is a point of maximum for log trgw — Ap, we have

log trow < Ap +1log C' — Ap(p) — Ap(p),
and so possibly by increasing A a bit,
trow < CeAle—infare)

Again applying the same reasoning as above, and possibly increasing A, we also
have the reverse inequality

troo < CeAle—infar @)



LECTURE NOTES ON CALABI'S CONJECTURES AND KAHLER-EINSTEIN METRICS 17

Proof of Lemma /.4. We compute at a point p € M using normal coordinates with
respect to w. That is, at p

9i5 = 055> Gijsk = Gijp = 0.
By a unitary change of coordinates, we can also assume that w at p is given by the
diagonal matrix with positive eigenvalues {)\;}. Putting u = tryw we have

Au_ |Vuf
U u?

Alogu =

‘We now compute
Au = 979,055 gu1)
= 99 0i(~" 459" 9k + 8" 9kr3)
= 975" 439" 901 + 973" 9155
For the first term on the right,
—gijﬁkgﬁal’);ijgal_gki = —gﬁﬁkl’c;ﬁgkl’c
>-B Z 9" gk
ik

—B(trgw)(tr,w).

Here B is an upper bound on the numbers gyj.;;, or more intrinsically, an upper
bound on the holomorphic sectional curvature of g, that is,

Rispr < B(9:5911 + 9i1x7)-
For the second term, we recall that
R = =i + gaEng;igaf;jv
and so
M 9iti; = =979 Rigis + 979" Ghaiibari
= =" Rur + 9" 9" grasiGari-
Taking log and v/—199 on both sides of (CMA), we have that
—Ryp = Fip — Aoy — szﬁ
and so
—§MR=AF —AAp— 8§
=AF - XAp— 8§
:AF—)\tr@,w—i—)\n—S
> —Ctrgw — C.
Putting all of this together, we have
(3) Au > —B(trgw)(tr,w) — Ctrow — C + gﬁgaa|gka;i|2.
Finally, using the Cauchy Schwarz inequality

(trpw)(trew) > n?,
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we have
C i, ad v 2
AlOgUZ—BtI‘de—C— +g 9" " 9ka;i9aki | U|
trow U u?
X it aa kai0o T Vul?
B+ O/ —C+ 8 gua,lgak,z | uz\ .
Claim, 20" loaul’® Va5
u U -

Proof. This follows from two applications of the Cauchy Schwarz inequality. First,
we compute

|Vul|* = Zg“a trow)d; (trow)
=Zg 00" 90 (3 9.p)

= Z g gkl;;iga?z;f

i,k,a

and so in particular gﬁ = )\71, and

|vu‘2 Z >‘ gkk zgaaz

Recall that g;; = \id;;

igo

i,k,a
(99" gnaselyu = (D2 AT lgwasl?) (3 4 )-
i,k,a p

We now estimate

Yl = Zzgmgam
<Z(ZA Yougal?)” (ZA Youas?)

(= (Zvllgaaﬁ)”)

(S ) )

g( )(;;Ajlkallgaa;jﬁ)

< (zpj M) (3030 gnasl?)

a,j,k

This completes the proof of the claim, and hence the proof of the lemma.
O

4.2. C3-estimate. Just as in the case of the C? estimate, the proof of the C?
estimate relies on the following differential inequality.

Lemma 4.5. There exists a constant C depending only on (M,®), ||Vpl||ls and A
such that if S = |Vw|?, then
AS > -CS-C.
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Proof of Proposition 4.1. Recall that we are assuming w solves
Ric(w) = dw + p
Ao <w < AD,

As in the case of the C? estimate, we need a barrier function u such that Aw is
roughly S and u is bounded. We take u = tryw. In the previous lecture we proved
the following differential ienquality

Au > —B(tryw) (tr,w) — Ctrow — C + gﬁg“a|gka;i|2
> —C'+ 9" 9" grasi |
The second term is almost S. In fact in normal coordinates for @, and diagonalising
w, we have ) ) )
S =9"9"g"* gra:l” < Mg" 9" |grasil®,

and so

Au>—-C+A1S.
Then by Lemma 4.5

AS+ (C+1)Au) > S -C.

An application of maximum principle then gives a uniform upper bound on S. This
in turn gives a uniform upper bound on [Vw|3 < A3S, completing the proof of the
Proposition. ([
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5. LECTURE-5: CO-ESTIMATE

We prove Proposition 4.3 in this lecture, thereby completing the proof of Calabi
conjecture.

Proof of Proposition 4.3. The proof is a simple application of the maximum principle
for the case A < 0, while it is much more involved for the A = 0.

e Case-1 : )\ < 0. In this case w solves
(& +V/=100p)" = "¢ om.

Let p € M such that ©(p) = sup,; . Then by the maximum principle we
have v/—100¢(p) < 0, and so

@ (p) > eF AP (p).

Thus e~ 2¢®) < e~ F o (p) < ||F||co/(=A). Similarly, we can obtain
a lower bound for ¢.
e Case-2 : \ = 0. For simplicity, we rescale @ so that fM w"™ =1, and set

b=p- / pa.
M
Then 9 still satisfies
(4) (& +V=100y)" = eF ™.
The proof relies on the elementary fact that
sup [¢p| = Lim [|¢][1r(2),
M p—00

and that the sequence of LP norms on the right is increasing. Multiplying
(4) by 9||*~! and integrating by parts

n—1
- /M Y| IV=1009 A Y wl NG

=0

n—1
a/ I IV=10 A0 A wl A™ T
M

Jj=0

[ vttt -
M

Y

a/ || 271/ =10% A O A"
M
—an [ ol vepar

_ 4dna o aslig.n
= oy [ el

Note that, just as in the uniqueness proof, we again used Lemma 3.2 in
the third line. Now, the left hand side above can be bounded using the
equation, and so we obtain, the inequality

a

. 1 1)?
6 [ ot por < L [ jyjean,
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By Sobolev inequality, if we let p = a + 1, and 8 =n/n — 1, we get that if
p>1,

([ wirar)” scol [ wpams [ por)
<on(( [ wpan) ™ + /| wran)

<o [ o)
M
Taking the p'” root,
©) (L [ sc)) < (C)Pmax(L [0l

Let po = 2, pry1 = prB, and A = max(1, [|[Y]] e (ar,0))-
logC logpk

log Ag41 < + log Ay,
Pk
k k
log C 1 k
< (22X il -
_( +log );5 1ogﬁ;6k+1ogAO
< C + Ay,

since all the series are convergent. Exponentiating and taking limit

max(1,sup [¢|) = lim Api1 < CAp = Cmax (17 ||1/J|‘L2(@)>.
M k—oo

To control the L? norm, by the Poincare inequality, inequality (5) with
« =1, and Holder inequality

/M wian < /M |@1/)|2€J" = C/M par < C(/M w%vn)%,

and so [[1)]|r2(e) < C. Going back to ¢, we then have

/ @o“—cgog/ e+ C,
M M

Since sup,, ¢ = 0, the right side gives a lower bound for integral of ¢, and
then the left side gives a lower bound on inf,; ¢, and we are done.

O

6. LECTURE-6: THE FANO CASE

We saw in the proof of Theorem C, there are two notable problems when A > 0.
Firstly, the openness argument does not work, since A + A\ might have a kernel if
A > 0, and hence need not be invertible. In fact if M is Fano and w is Kahler-
Einstein, then the kernel of A+1 corresponds precisely to holomorphic vector fields.
The second problem is that the C%-estimate does not go through. The openness
issue is easy to fix, by simply choosing a different continuity method. So for the
rest of the lecture, we will assume that M is Fano, that is ¢; (M) > 0, and attempt
to solve the following equation:

(7) Ric(w) = w.
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If we now take a reference form o € ¢1 (M), then by the /—190-lemma, there exists
a function F' such that

Ric(a) = a + V—100F.
Then w = a + /=199y solves (7) if and only if
{(a +V/=100p)" = ef'—%an
w = a++/—190p > 0.
We consider the following continuity method
{(a +V=108p,)" = eF—toan
Wy == p+ /=190y > 0.
At the level of Ricci curvature, the corresponding equation is
(***%) Ric(wt) = twy + (1 — t)a.
We let

(8)

(**t)

I ={t€]0,1] | (8) has a smooth solution}.

Then by Theorem C, 0 € I. For openness, we proceed as before. Suppose there is a
solution ¢y, to (**,) at t = tg, then we consider the following map M : C3* — O

(wto + v —1851&)
Wiy
Clearly M(0) = 0. Then it is easy to check that
DoM(¥) = Au, ¥+ to,

To prove openness, we only have to show that the kernel of this map is trivial, and
this is accomplished by the following Lemma.

M) =log ! + to.

Lemma 6.1. If w is a Kdahler metric such that Ric(w) > tw and Ay is the first
non-zero eigenvalue of the Laplacian, then A1 > t.

Proof. By the standard Bochner formula (see Week-2 assignment 7(c)), and our
assumption that Ric(w) > tw,

AIVF? = YV + (VAL V) + RV [VIf > (VAF, V) + V[,
If f is any eigenfunction, that is Af + Af = 0 with A > 0, then
AV = (= NIV

The integral of the left hand side is zero, and hence (t — )|V f|?> < 0. Since A > 0,
f is not a constant, and hence A > t. |

Now, by (***,), if to < 1, Ric(wy,) > tows, since a > 0, and so by the Lemma
Awto + to has not kernel, and hence is invertible. The following proposition is a
consequence of the above discussion and propositions 4.2 and 4.1.

Proposition 6.2 (Aubin, Yau). There exists a solution to (8) if there exists a
constant C' such that for any solution of (**;),

llotllco < C.
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Remark 6.3. Uniqueness of Kahler-Einstein metrics is obviously false, since Fano
manifolds have plenty of holomorphic vector fields. So if w is a KE metric and
is a biholomorphism generated by a holomorphic vector field, then ¥ *w is also a
KE metric. In the late 1980s Bando-Mabuchi that this is the only obstruction to
uniqueness. In particular, they showed that if wy and wy are two solutions to (7),
then there exists a biholomorphism W such that wy, = ¥*w;. There proof actually
involved solving the continuity backwards, and as a consequence one obtains a
converse to the above Proposition. Namely, that if there exists a KE, then one can
obtain a C? bound along the continuity method.

6.1. Obstructions of Futaki and Matsushima and the YTD conjecture.
We denote the space of holomorphic vector fields on M by n(M). Locally any

& € n(M) looks like

; 0

E=¢o

where each £“ is a local holomorphic function. We denote the space of biholomorphisms
of M by Aut(M), and it’s identity component by Autg(M). One of the earliest
obstructions to the existence of KE metrics on Fano manifolds was found by
Matsushima in the 1950s.

Proposition 6.4 (Matsushima). If M is Fano and admits a Kahler-Einstein metric,
then Autg(M) is reductive.

Corollary 6.5. P2 blown up at one or two points do not admit a KE.

To describe the obstruction discovered by Futaki, we first observe that if w
is a Kahler metric, then j;w := gi3§i is a O-closed (0,1) form, and since every
Fano manifold has finite fundamental group (a consequence of Calabi conjecture),
Hg’l(M7 C) = {0}, and hence there exists a function 6, € C*°(M,C) (unique upto
a constant) such that

meg = igw.

We then define the Futaki invariant by

(9) Fut,, (€) = / B (Ric(w) — w) Aw™ .

It turns out that the Futaki invariZnt is in fact independent of the metric chosen

in ¢, (M).

Lemma 6.6. If w; and ws are two metrics in ¢y (M), then for all & € n(M),
Fut,, (§) = Futy, (£).

Hence we simply denote the Futaki invariant as Fut(§) without any reference to a
particular Kdhler metric, and as a consequence if M admits a KE, then Fut(-) = 0.

Conjecture 6.7. (Calabi) If M is Fano and has no non-trivial holomorphic vector
field, then it admits a Kdahler-FEinstein metric.

The conjectured was prove for Kahler surfaces by Tian [7] in the late eighties.
Unfortunately the above conjecture turned out to be false.

Remark 6.8. In 1997, Tian [8] proved that a certain Fano three-fold M, studied by
Mukai-Umemera, admits complex structures with no holomorphic vector fields and
also no KE. Enroute to proving this, he introduced the notion of K-stability which
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involved allowing the manifold to degenerate and computing a Futaki invariant on
a possibly singular normal Q-Fano variety. Since mid 80s, Yau had already been
advocating that the obstruction to existence of KEs on Fano manifolds must be
related to some algebro-geometric stability. Tian in his 1997 paper proceeded to
conjecture that a Fano manifold admits a Ké&hler-Einstein metric if and only if
it is K-stable. In early 2000’s Donaldson extended the definition of K-stability
to all pairs (M, L) of complex manifolds polarised with ample line bundles, and
conjectured that the existence of a constant scalar curvature Kéhler metric in ¢; (L)
(of which KE metrics are special cases where L = K;,) should be equivalent to
K-stability. This (still open) central conjecture in the field is called the Yau-Tian-
Donaldson conjecture. The interested reader can refer to the excellent book [5] for
an introduction for this circle of ideas.

Definition 6.9. Let M be a Fano manifold. A special degeneration of M consists
of an embedding M < P™+ by sections of K, and a C* subgroup of PGL(N,C)
such that the limit W := lim;_,o M is a normal variety. The C* action fixes W and
induces a holomorphic vector field w on W. We say M is K-stable if for all such
special degenerations

Fut(W,w) > 0,
with equality if and only if W = g - M for some g € PGL(N,C).

In 2012 the YTD conjecture was finally settled for Fano manifolds.

Theorem 6.10 (Chen-Donaldson-Sun [2]). A Fano manifold M admits a Kdhler-
Einstein metric if it is K-stable.

6.2. Kahler-Einstein metrics along the smooth continuity method. The
only if part had already been established by Tian for manifolds with no holomorphic
vector fields (in the same 1997 paper discussed above) and by Robert Berman in
general. The method of Chen-Donaldson-Sun used a continuity method through
Kahler-Einstein metrics with cone singularities. The main idea is to begin with a
conical Kéhler-Einstien metric with small cone angle 273 along an anti-canonical
divisor, and then to deform this cone angle to 27, thereby obtaining a smooth KE
metric in the limit. After their paper appeared, there still remained a question
as to whether one could prove Theorem 6.10 using the continuity method (**,).
This program was completed in 2015 by Gabor Szekelyhidi and the author [3],
by adapting the techniques developed by Chen-Donaldson-Sun. The advantage of
using the smooth continuity method, as opposed to the conical continuity method
is that we were able to obtain an equivariant version of the theorem, which has
been particularly useful in finding new examples of Ké&hler-Einstein manifolds.

Theorem 6.11. If M is equivariantly K-stable, then there exists a solution to
(**;) for all t € [0,1]. In particular, there exists a Kdihler-Einstein metric.

A broad overview of the proof. Suppose the continuity method fails for the first
time at some time 7'. Then there exists a sequence €9 < ¢, — 1" such that wy := wy,
solve

Ric(wk) = tpwg + (1 — tk)a.
In particular, Ric(wy) > eowg. Since the volumes of all these metrics are fixed, it
is well known, by a theorem of Gromov’s, that (M,wy) converge in the Gromov-
Hausdorff sense to a compact metric space (Z,d). For sequences of Kéhler-Einstein
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metrics, it was conjectured by Tian, and proved by Donaldson-Sun [4], that the limit
is normal, projective variety. This had been a major stumbling block in proving
the YTD conjecture for Fano manifolds. Indeed, in [2], Chen-Donaldson-Sun prove
an analogous result for conical K&hler-Einstein metrics. For the smooth continuity
method, Szekelyhidi [6] adapted the techniques of Chen-Donaldson-Sun and proved
the following.

Theorem 6.12. There exists a r >> 1 and embeddings Ty : M < PN by
sections of K}, which are orthonormal with respect to hermitian metrics hy, where
wp = —v/—190log hy,. Moreover the flat limit W of the family Ty(M) is a normal
projective variety homeomorphic to (Z,d).

The W obtained above, is then a candidate for the central fibre of a destabilising
special degeneration. A technical point is that W is in the orbit closure of PGL(N, C),
the definition of K-stability requires the central fibre to be in the closure of a C*
subgroup. In [2], this is done by applying the Luna slice theorem from algebraic
geometry to the pair (W, A), where A is a divisor in W such that W admits a KE
metric with cone singularities along A. In proving Theorem 6.11, one is forced to
consider pairs (W, 3), where 8 is a (1,1) current on W. This space is of course
infinite-dimensional and the Luna slice cannot be directly applied. This difficulty
is overcome in [3] by approximating § by currents that are concentrated along
divisors, that is,

K
B~y [Hi N W],
=1

and then applying Luna slice theorem to tuples (W, Hy "W, --- | Hxg NW). O
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APPENDIX A. PROOF OF LEMMA 4.5

Though the original computation is due to Calabi himself, our proof follows
the simplified computations due to Phong-Sturm-Sessum. We begin with a simple
observation that if Hlkj = Ff'j — Ff’j = gklvigjl-, then

S = |VwlZ = ¢ g"9""VigisVigia = 97 9" Hij Hy90a = 97 9" gagHi HYy = |HI?,
where note that the norm is with respect to w. We compute using normal coordinates
with respect to w. It is not difficult to see that

A|H|? = |VH|?> + |VH|* + Re(V,VsH,H) + Re(VyV . H, H),

where (VT,T) = gpqgiigkfﬂ%TT% for any section T" of T*(L0) M @T*(0) M@ T (10 M.
Commuting the covariant derivatives, using the so-called Ricci identity (see Week-2
assignment for the corresponding formulae for one-forms and vector fields),

V.ViH — ViV, H = Ragpkaj - RaEipHZ’fj — Ragij{’;,

and so
VaVeH =V,VaH — R HY, + RYHY, + RPH],
=VoVaH — g" Ry HY, + "' RigH); + g"' RjzH},
But from the equation R,; = Agpg + ppg, and the assumption that A™1d < w < A&,
we see that A~'w < Ric(w) < Cw, and hence
Re(VaV.H,H) > Re(V,VoH, H) — C|H|*.
And so,
(10) A|H|? > 2Re(V,VH, H) — C|H|?.
The advantage of having an barred covariant derivative first, is that since H has only

unbarred entries, covariant differentiation is the same as ordinary differentiation.

To estimate the first term, we recall that Riajk = fI‘fj;a (and a similar formula for

R) and hence we compute
VoVaH} =V},
= _vaRz‘ajk - @aRz‘ajk + (Vo — @a)lfiz'ajl€
= —ViR,." — ViR + (Vo — Vo) Rig*
= -ViR} - ViR} + (V. — Va)Ri*,
where we used the second Bianchi identity VaRiajk = Vl-Raajk in the third line.
Now the difference in the connections is precisely the quantity H and hence
IViR*| +|(Va = Va)Rigj"| < CH| + C.
For the first term,

_

zj;a]

ViR =(Vi—V)R} + VR
Now, from the equation, and the fact that w and & are equivalent, this term can
be controlled by C|H| + C, where C might depend on |Vp|. Putting all of this
together,
[Re(V,VaH/)| < C|H|* + C|H],
and hence
AlH[* > ~C|H|* - C|H| - C,
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from which the result follows since |H| can be estimated by C + C|H |2.
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