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1. Lecture-1: Calabi’s conjectures

1.1. A review of basic Kähler geometry. Let (M,ω) be a compact, connected
Kähler manifold. Then locally, the Kähler form is given by

ω =
√
−1gij̄dz

i ∧ dz̄j ,
where {gij̄} is a hermitian symmetric, positive definite matrix, such that gij̄;k =
gkj̄;i, where semi-colons denote derivatives. These conditions are of course equivalent
to ω being a real, closed, positive (1, 1) form. Since ω is a closed, it determines a
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cohomology class [ω] ∈ H2(M,R). We say that a cohomology class α ∈ H2(M,R)
is Kähler, and write α > 0, if it contains a Kähler form. The set of all Kähler
classes

CM := {α ∈ H2(M,R) | α > 0}
is an open, convex cone in the finite dimensional vector space H2(M,R), and is
called the Kähler cone of M . We need the following fundamental result on the
structure of the Kähler cone.

Lemma 1.1 (
√
−1∂∂-Lemma). Let ω1 and ω2 be real, closed (1, 1) forms such that

[ω2] = [ω1]. Then there exists a ϕ ∈ C∞(M,R) such that

ω2 = ω1 +
√
−1∂∂ϕ.

As a consequence, we can write

CM =
{d closed positive real (1, 1) forms}

Image(
√
−1∂∂)

.

There is natural almost complex structure J : TM → TM , J2 = −id given
locally by

J
( ∂

∂xi

)
=

∂

∂yi
, J
( ∂

∂yi

)
= − ∂

∂xi
,

where zi = xi +
√
−1yi. The pair (J, ω) determines a Riemannian metric on M by

g(u, v) = ω(u, Jv).

The Riemannian Ricci curvature is then given by Rcg(u, v) = Ric(ω)(u, Jv), where

Ric(ω) = −
√
−1∂∂ logωn

is the Ricci form. Since ωn defines a hermitian metric on the anti-canonical line
bundle K∗M , Ric(ω) being the corresponding curvature form is a representative of
the first Chern class c1(M) := c1(K∗M ).

Conjecture 1.2. (Calabi) Conversely, every real (1, 1) form in c1(M) is the Ricci
for of some Kähler form.

1.2. Prescribing Ricci curvature. Calabi’s conjecture was solved in 1978 by
Yau.

Theorem A (Yau, [9]). Given any ρ ∈ c1(M) and any α ∈ CM , there exists an
ω ∈ α such that

Ric(ω) = ρ.

This immediately had some far reaching consequences. Due to the lack of space,
we only mention one particular spectacular consequence. But first we state the
following elementary consequence.

Corollary 1.3. Let M be a compact Kähler manifold. Then M has a K—”ahler
metric with positive (resp. zero and negative) Ricci curvature if and only if c1(M)
is positive (resp. zero and negative).

This in turn has various topological consequences. For instance, by an application
of Bonnet-Myers, any manifold with c1(M) has a finite fundamental group.

Corollary 1.4. There exist infinitely many non-flat Riemannian manifolds (M, g)
with Rcg ≡ 0.
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Remark 1.5. Riemannian manifolds with Ricci curvature identically zero are
called as Ricci flat manifolds. Before Yau’s solution of the Calabi conjecture, not
even a single example of a non-flat, compact Ricci flat manifold was known. Note
that a flat manifold of dimension m has Rm as it’s universal cover. In particular,
if a flat manifold is compact, it cannot be simply connected.

Proof of Corollary 1.4. Let P be a homogenous polynomial in Cn+1 of degree n+1,
such that

∩ni=0

{∂P
∂ξi

= 0
}

= {0}.

Then MP = {[ξ0, · · · , ξn] ∈ Pn | P (ξ0, · · · , ξn) = 0} is a complex submanifold of Pn
of dimension n− 1. An infinite family of examples is provided by P (ξ0, · · · , ξn) =
(ξ0)n+1 + · · ·+ (ξn)n+1. If ωP is the restriction of the Fubini-Study metric to MP ,
then Lemma 1.6 below shows that

Ric(ωP ) = −
√
−1∂∂ψ,

for a certain smooth function ψ on MP . In particular, c1(MP ) = 0. By Theorem
A, there exists a Ricci flat metric on MP . Next, by Lefschetz hyperplane section
theorem the fundamental group π1(MP ) ∼= π1(Pn) = {0} if n > 2. Hence MP is
simply connected whenever n > 2 (when n = 2, MP is simply an elliptic curve, and
clearly not simply connected). But then by Remark 1.5, Secg cannot be identically
zero.

�

Lemma 1.6. Let P be a homogenous polynomial in Cn+1 of degree d, such that

∩ni=0

{∂P
∂ξi

= 0
}

= {0}.

Then

(1) MP = {[ξ0, · · · , ξn] ∈ Pn | P (ξ0, · · · , ξn) = 0} is a complex sub-manifold
of Pn of dimension n− 1.

(2) If ωP is the restriction of the Fubini-Study metric to MP , then

Ric(ωP ) = (n+ 1− d)ωP −
√
−1∂∂ψ,

where

ψ := log
(∑

i

∣∣∣ ∂P∂ξi ∣∣∣2
|ξ|2(d−1)

)
is a smooth function on ψ.

(3) In particular, c1(M) = (n+1−d)c1(OPn(1)
∣∣∣
MP

) and hence is positive, zero

or negative, depending on whether d < n+ 1, d = n+ 1 or d > n+ 1.

Definition 1.7. A compact Kähler manifold is said to be

(1) Fano if c1(M) > 0,
(2) Calabi-Yau if c1(M) = 0 and
(3) General Type if c1(M) < 0.

Remark 1.8. Calabi-Yau manifolds are extensively studied by geometer and string
theorists alike. We refer the interested reader to the excellent survey [10] article by
Yau on the geometry of Calabi-Yau manifolds. Note that the vanishing of c1(M)
implies that KM is topologically trivial. An interesting corollary to Theorem A is
that some power Kl

M is also holomorphically trivial.
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1.3. Kähler-Einstein metrics.

Theorem 1.9 (Uniformization theorem). Given any compact oriented Riemannian
surface (Σ2, g0), there exists a metric g̃ in the conformal class [g0] = {eug0 | u ∈
C∞(Σ,R)} with constant Gauss curvature sgn(χ(M)), where χ(M) is the Euler
characteristic.

Recall that there exist isothermal coordinates with respect to which

g0 = h(dx2 + dy2).

The isothermal coordiantes determine an integrable almost complex structure J on
TΣ with holmorphic coordinate z = x +

√
−1y. Moreover the complex structure

J only depends on the conformal class [g0] and not on the particular metric g0.
The area element ωg = dAg of any g ∈ [g0] is then a Kähler metric on M , and the
uniformization theorem is then equivalent to the statement that

Ric(ωg) = sgn(χ(M)) · ωg.
This motivates the next definition.

Definition 1.10. A Kähler metric ω on M is said to be Kähler-Einstein if there
exists a λ > 0 such that Ric(ω) = λω.

Remark 1.11. (1) (Rescaling) If ω is a Kähler-Einstein metric with λ 6= 0,
then ω̃ := |λ|ω is also KE with

Ric(ω̃) =
λ

|λ|
ω̃,

and so without any loss of generality we can assume λ = ±1 or 0.
(2) (Topological restriction) If ω is KE, then clearly λ[ω] = c1(M), and hence

the chern class must either vanish or must have a sign.

λ c1(M) [ω]
−1 < 0 −c1(M)
0 = 0 CM
1 > 0 c1(M)

Theorem B. (1) (Yau, [9]) If c1(M) = 0, then for any α ∈ CM , there exists
an ω ∈ α such that Ric(ω) = 0.

(2) (Aubin [1], Yau [9]) If c1(M) < 0, then there exists a metric ω in− c1(M)
such that Ric(ω) = −ω.

Corollary 1.12. If P is a homogenous polynomial Cn+1 of degree d, such that

∩ni=0

{∂P
∂ξi

= 0
}

= {0}.

Then MP = {[ξ0, · · · , ξn] ∈ Pn | P (ξ0, · · · , ξn) = 0} admits a Kähler-Einstein
metric with negative scalar curvature if d > n+ 1.
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2. Lecture-2: Analytic preliminaries

For this lecture, we let (Mn, ω) be a compact Kähler manifold. At times, we
will be concerned only with the underlying Riemannian structure (Mm, g), where
m = 2n.

Definition 2.1. Let f ∈ C∞(M,R).

(1) The complex gradient ∇f : M → Γ(M,T (1,0)M) is defined to be

∇f := gij̄
∂f

∂z̄j
∂

∂zi
.

(2) The complex Lapalcian is defined to be

∆f := ∇i∇if = gij̄∂i∂j̄f.

(3) Given a (1, 1) form α =
√
−1αij̄dz

i ∧ dz̄j , we define the trace with respect
to ω by

trωα = Λωα := gij̄αij̄ .

Remark 2.2. (1) The Riemannian gradient is characterised by the property
that

X(f) = g(gradf,X)

for all vector fields X, and in fact is precisely half the real part of the
complex gradient. More precisely,

∇f =
1

2
(gradf −

√
−1Jgradf).

In particular |∇f |2 = |gradf |2/2. We also have that the Laplace-Beltrami
operator ∆LB is twice the complex Laplacian.

(2) Our Laplacian is the so-called analysts Laplacian, and is a negative operator,
as can be seen from the following integration by parts formula∫

M

∆fϕωn = −
∫
M

∇f · ∇ϕ ωn.

(3) We have the identities

Λωα = n
α ∧ ωn−1

ωn

∆f = n

√
−1∂∂f ∧ ωn−1

ωn

|∇f |2 = n

√
−1∂f ∧ ∂̄f ∧ ωn−1

ωn
.

Proposition 2.3. (Maximum principle)

(1) Let f ∈ C2(M,R). If f has a local maximum at p ∈M , then
√
−1∂∂f(p) ≤ 0.

In particular, ∆f(p) ≤ 0.
(2) Moreover if f ∈ C2(M,R) such that

√
−1∂∂f ≡ 0, then f is a constant.
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Proof. (1) From the maximum principle from calculus, the real Hessian at a
local max is non-positive. From this, proposition follows when n = 1, since
if t = u+ iv, then

∂2ψ

∂t∂t̄
(p) =

1

4

(∂2ψ

∂u2
+
∂2ψ

∂v2

)
(p) ≤ 0.

In general, let ξ ∈ T 1,0
p M , ξ 6= 0, and consider ψ(t, t̄) = f(p + tξ, p+ tξ).

Then ψ has a local max at 0, and so

0 ≥ ∂2ψ

∂t∂t̄
(0) =

∂2f

∂zi∂z̄j
(p)ξiξj .

(2) Now suppose
√
−1∂∂f = 0, and ω is any Káhler metric on M , then

0 =

∫
M

f ∧ ωn−1 = −
∫
M

√
−1∂f ∧ ∂̄f ∧ ωn−1 = −n

∫
|∂f |2ωn.

Hence f is holomorphic, and thus a constant.
�

2.1. Schauder estimates on Rm. For this section, we let Ω ⊂ Rm be a bounded,
connected, open set.

Definition 2.4. Let f ∈ Ck(M,R). For any α ∈ (0, 1), we define the Hölder semi
norm by

[f ]Cα(Ω) := sup
x,y∈Ω, x 6=y

|f(x)− f(y)|
|x− y|α

,

and the Hölder Ck,α norm by

||f ||Ck,α(Ω) := sup
|β|≤k

||Dβ ||C0 + sup
|β|=k

[Dβf ]Cα(Ω),

where β = (β1, · · · , βm) is a multi-index, and Dβ is the corresponding partial
derivative of order |β| = β1 + · · · + βm. We then define the Hölder space Ck,α(Ω)
as

Ck,α(M,Ω) := {f ∈ Ck(Ω) | ||f ||Ck,α(Ω′) <∞ for all Ω′ ⊂⊂ Ω}.

Note that Ck,α(M,Ω) is not a Banach space.

Definition 2.5. A linear second order partial differential operator is an operator
L : C∞(M,R)→ C∞(M,R) that can be written as

L[u] = aij
∂2u

∂xi∂xj
+ bi

∂u

∂xi
+ cu,

where aij , bi, c ∈ C0(M,R). We say that L is elliptic if the matrix aij is positive
definite everywhere in Ω.

Example 2.6. If g is any Riemannian metric on Ω, then ∆g is an elliptic operator.
Indeed,

∆g = gij
∂2

∂xi∂xj
+ lower order terms.

The key result we need is as follows.

Theorem 2.7 (Elliptic regularity and local Schuader estimates). Let Ω′ ⊂⊂ Ω.
Suppose α ∈ (0, 1) and k ∈ N. Suppose further that

(1) L is an elliptic 2nd order differential operator on Ω with aij , bi, c ∈ Ck,α(Ω).
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(2) u ∈ C2(Ω) satisfies Lu ∈ Ck,α.

Then u ∈ Ck+2,α(Ω), and moreover, we have the estimate

||u||Ck+2,α(Ω′) ≤ C
(
||Lu||Ck,α(Ω) + ||u||C0(Ω)

)
,

where C depends only on the Hölder norms of the coefficients, the domains Ω, Ω′,
and the constant of ellipticity Λ.

Remark 2.8. The term ||u||C0(Ω) is needed on the right, as can be seen by taking
L = ∆ and u an arbitrarily big constant.

2.2. Elliptic operators on compact Riemannian manifolds. Now let (M, g)
be a compact Riemannian manifold of dimension m. We fix an open cover M =
∩Nj=1Uj such that

1

2
δij ≤ gij

∣∣∣
Uj
≤ 2δij ,

and a partition of unity {ρj} subordinate to {Uj}.

Definition 2.9. For any f ∈ Ck(M), we define

||f ||Ck,α(g) :=
∑
J

||ρj ||Ck,α(Uj),

where Hölder norms on the right are the usual Hölder norms in Euclidean domains.
We then define the Ck,α-Hölder space by

Ck,α(M) := {f ∈ Ck(M) | ||f ||Ck,α(g) <∞}.
Remark 2.10. Even though the Hölder norm depends on the metric, the Hölder
spaces Ck,α(M) themselves are independent of the metric.

Proposition 2.11. (1) For any k ∈ N and any α ∈ (0, 1), (Ck,α(M) < || ·
||Ck,α(g)) is a Banach space.

(2) For any α′ < α, Ck,α(M) ⊂ Ck,α
′
(M) is a compact embedding. That

is, if fi is a sequence of functions in Ck,α(M) with ||f ||Ck,α(g) ≤ C for
some uniform constant C, then there exists a sub-sequence fij converging

in || · ||Ck,α′ (g) to a limiting function f ∈ Ck,α′(M).

Definition 2.12. A 2nd order differential operator is a map L : C∞(M)∞(M) that
can be written as

Lu = aij∇i∇ju+ bi∇i + cu,

where ∇ is the Levi-Civita connection, aij and bi are continuous sections of TM ⊗
TM and TM respectively and u ∈ C0(M). We say L is elliptic if aij is a positive
definite form.

Definition 2.13. Given L, the adjoint L∗ is defined as the unique second order
differential operator such that∫

M

LfϕdVg =

∫
M

fL∗ϕdVg,

for all ϕ ∈ C∞(M).

Lemma 2.14. If L = aij∇i∇j + bi∇i + c, then

L∗ϕ = aij∇i∇jϕ+ (∇jaij +∇jaji − bi)∇iϕ+ (∇i∇jaij −∇ibi + c)ϕ.

In particular, L is elliptic if and only if L∗ is elliptic.
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Example 2.15. The Laplace-Beltrami operator

∆g = gij∇i∇j
is an example of an elliptic second order differential operator. In fact it is also self
adjoint, that is ∆∗g = ∆g.

Definition 2.16. (Weak solutions) We say that u ∈ L2(M) solves Lu = f weakly,
if for all ϕ ∈ C∞(M), ∫

)MfϕdVg =

∫
uL∗ϕdVg.

Of course if u ∈ C2 solves Lu = f , then it also solves this equation weakly.

Theorem 2.17. (Regularity and Global Schauder estimates) Suppose f ∈ Ck,α(M)
and u ∈ L2(M) satisfies Lu = f weakly. Then u ∈ Ck+2,α(M) (or more precisely,
this holds after possibly modifying u on a measure zero set), and

||u||Ck+2,α(g) ≤≤ C
(
||f ||Ck,α(Ω) + ||u||C0(Ω)

)
.

In particular,

ker(L) = {u ∈ L2 | Lu = 0 weakly} ⊂ C∞(M).

Theorem 2.18. (Existence) In the same setting as the above theorem, if f ∈
Ck,α(M), then there exists a unique u ∈ Ck+2,α(M) ∩ ker(L)⊥ solving Lu = f if
and only if f ∈ ker(L∗)⊥. In particular

L : Ck+2,α(M) ∩ ker(L)⊥ → Ck,α(M) ∩ ker(L∗)⊥

is an isomorphism.

We need the following corollary in our proof of the Calabi conjecture.

Corollary 2.19. Consider the equation

(*) ∆gu+ λu = f.

(1) If λ = 0, then

∆g : {u ∈ Ck+2,α(M) |
∫
M

u dVg = 0} → {f ∈ Ck,α(M) |
∫
M

f dVg = 0}

is an isomorphism.
(2) If λ < 0, then ∆g + λ : Ck+2,α(M)→ Ck,α(M) is an isomorphism.

2.3. Poincare and Sobolev inequalities.

Theorem 2.20. Let (Mm, g) be a compact Riemannian manifold. There exists
constants CS and CP such that for any f ∈ C∞(M,R),

(1) (Soboelv ienquality)(∫
M

|f |
2m
m−2 dVg

)m−2
m ≤ CS

(∫
M

|∇f |2 dVg +

∫
M

f2 dVg

)
(2) (Poincare inequality) If f̂ = 1

V

∫
M
f dVg is the average of the function f on

M , then ∫
M

(f − f̂)2 dVg ≤ CP
∫
M

|∇f |2 dVg.
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Remark 2.21. Here CS and CP denote the best possible constants for which the
above inequalities hold, and are referred to as the Sobolev and Poincare constants
of (M, g) respectively. The Poincare constant CP is in fact precisely the inverse of
the first non-zero eigenvalue λ1 of −∆g. This follows from the Rayleigh quotient
characterisation of eigenvalues

λ1 = inf
f∈C∞(M,R), f̂=0

∫
M
|∇f |2 dVg∫
M
f2 dVg

.



10 V. V. DATAR

3. Lecture-3: Complex Monge-Ampere equations

Recall that our goal is to solve the following equations.

(1) Given ρ ∈ c1(M), real and (1, 1) form, and any Kähler class α ∈ CM , find
ω ∈ α such that

Ric(ω) = ρ.

(2) Solve
Ric(ω) = λω.

We can combine the equations into a single twisted KE equation

(t-KE) Ric(ω) = λω + ρ,

We seek solutions ω in a given Kähler class α ∈ CM . Then necessarily [ρ] ∈
c1(M) − λα. If ω̂ ∈ α is a fixed background metric, by the

√
−1∂∂-lemma, there

exist functions F,ϕ ∈ C∞(M,R) such that

Ric(ω̂) = λω̂ + ρ+
√
−1∂∂F

ω = ω̂ +
√
−1∂∂ϕ.

Then (t-KE) is equivalent to the equation

−
√
−1∂∂ log

( (ω̂ +
√
−1∂∂ϕ)2

ω̂n

)
= −
√
−1∂∂(F − λϕ).

By Lemma 2.3, it follows that solving (t-KE) is then equivalent to solving the
following complex Monge-Ampere equation.

(CMA)


(ω̂ +

√
−1∂∂ϕ)n = eF−λϕω̂n

ω := ω̂ +
√
−1∂∂ϕ > 0

(λ = 0) supM ϕ = 0

When λ = 0, the extra normalisation is needed in order to obtain a priori estimates.
For instance, we would need to obtain uniform C0-estimates on solutions to the
above equation (uniform in the sense of only depending on ||F ||C0 and (M, ω̂); cf.
Proposition 4.3). Now, if ϕ is a solution, ϕ + c will also be a solution for any
constant c, but with a C0-norm that goes to infinity as c→∞. Moreover, if λ = 0,
there is also an additional necessary condition for existence of solutions. To see
this, integrating both sides of (CMA), we obtain∫

M

eF ω̂n =

∫
M

(ω̂ +
√
−1∂∂ϕ)n =

∫
M

ω̂n,

where we used Stokes’ theorem in the second equality.

Theorem C. (1) (Yau) If λ = 0, (CMA) has a solution ϕ ∈ C∞(M,R) if and
only if ∫

M

eF ω̂n =

∫
M

ω̂n.

(2) (Yau, Aubin) If λ < 0, then (CMA) has a solution ϕ ∈ C∞(M,R).

The uniqueness of such solutions was proved by Calabi.

Theorem 3.1 (Calabi). If λ ≤ 0, the solutions to (CMA) are unique.

Proof. Suppose ϕ1 and ϕ2 are two solutions to (CMA). We let ωi = ω̂+
√
−1∂∂ϕi

and ψ = ϕ2 − ϕ1.
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• Case-1. λ < 0. Then ψ solves the equation

(ω1 +
√
−1∂∂ψ)n = e−λψωn1 .

If p is a maxima of ψ, then by the maximum principle
√
−1∂∂ψ(p) ≤ 0,

and so

e−λψ(p)ωn1 = (ω1 +
√
−1∂∂ψ)n ≤ ωn1 ,

and hence −λψ(p) ≤ 0 or equivalently (since λ < 0) ψ(p) ≤ 0. This shows
that ϕ2(x) ≤ ϕ1(x) for all x ∈ M . By symmetry, the reverse is also true
and we obtain that ϕ1 ≡ ϕ2.
• Case-2. λ = 0. Now ψ solves the equation

(ω1 +
√
−1∂∂ψ)n = ωn1 .

Subtracting the two sides, multiplying by ψ and integrating, we obtain

0 =

∫
M

ψ[(ω1 +
√
−1∂∂ψ)n − ωn1 ]

=

∫
M

ψ
√
−1∂∂ψ ∧

n−1∑
j=0

ωj2 ∧ ω
n−1−j
1

= −
∫
M

√
−1∂ψ ∧ ∂̄ψ ∧

n−1∑
j=0

ωj2 ∧ ω
n−1−j
1

≤ −
∫
M

√
−1∂ψ ∧ ∂̄ψ ∧ ωn−1

1

= −n−1

∫
M

|∇1ψ|2ωn1 ,

where we used Lemma 3.2 below in line 4 and Remark 2.2 in line 5. Since
the right side is always non-positive, this forces ψ to be a constant. But
since supM ϕ1 = supM ϕ2 = 0, this means that ϕ1 ≡ ϕ2.

�

Lemma 3.2. For any positive real (1, 1) forms ω and ω̂, and any ψ ∈ C∞(M,R),

√
−1∂ψ ∧ ∂̄ψ ∧ ωj ∧ ω̂n−1−j

ω̂n
≥ 0.

Proof. By applying a unitary transformation, we can assume that at a point p,

gij̄ = λiδij̄ , ĝij̄ = δij̄ ,

where each λi > 0. Then one can check that

√
−1∂ψ ∧ ∂̄ψ ∧ ωj ∧ ω̂n−1−j

ω̂n
=

∑
i,i1,··· ,ij

|ψi|2λi1 · · ·λij ≥ 0.

�
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3.1. Continuity method. For t ∈ [0, 1], consider

(*t)


(ω̂ +

√
−1∂∂ϕt)

n = cte
tF−λϕω̂n

ωt := ω̂ +
√
−1∂∂ϕt > 0

(λ = 0) supM ϕt = 0,

where ct are the constants

ct =

0, λ < 0( ∫
M
ω̂n
)( ∫

M
etF ω̂n

)−1

, λ = 0.

Note that e− supM F ≤ ct ≤ e− infM F , and that ct is continuous in t. Hence the
constants are pretty mild and do not cause any trouble in the estimates. We let

I := {t ∈ [0, 1] | (*t) has a smooth solution}.
The proof of Theorem C then consists of three parts

• Step-1. I is non-empty. This is trivial since ϕ ≡ 0 is a solution to (*t) at
t = 0 and hence 0 ∈ I.

• Step-2. I is open. This is accomplished via an inverse function theorem
and a perturbation argument.

• Step-3. I is closed. That is, if tk ∈ I such that tk → T , then T ∈ I.
This is done via obtaining a priori estimates and applying Arzela-Ascoli
theorem.

3.2. Openness.

Proposition 3.3. If (*t) has a smooth solution ϕt0 at t = t0, then there exists an
ε > 0 such that (*t) has a smooth solution for all t ∈ [t0 − ε, t0 + ε) ∩ [0, 1].

The proof relies on the following infinite dimensional inverse function theorem.

Theorem 3.4 (Inverse function theorem (abbr. IFT)). Let X and Y be Banach
manifolds and let M : X → Y be a C1 Frechet differentiable map. Suppose

(1) M(x0) = y0.
(2) Dx0M : Tx0X → Ty0Y is an isomorphism of Banach spaces.

Then there exist neighbourhoods x0 ∈ U ⊂ X and y0 ∈ V ⊂ M and a C1 Frechet
differentiable map G : V → U such that M(G(y)) = y for all y ∈ V . In particular,
for every y ∈ V , there exists a solution to M(x) = y in U .

Banach manifolds are essentially topological spaces that are locally homeomorphic
to isomorphic Banach spaces. A Frechet derivative is also defined in the usual way.
Even though we will not define these notions rigorously here, they will be self
evident when we use them in the proof below.

Proof of Proposition 3.3. We will give the complete proof in the case of λ = 0. The
other case is even easier, and we only indicate the main steps.

• Case-1. λ = 0. Then ϕt0 satisfies

(ω̂ +
√
−1∂∂ϕt0)n = ct0e

t0F ω̂n.

We set ωt0 = ω̂ +
√
−1∂∂ϕt0 . For |t− t0| << 1, we wish to find a solution

to (*t) of the form ϕt = ϕt0 +ψt. Then ϕt solves (*t) if and only if ψt solves

(ωt0 +
√
−1∂∂ψt)

n =
ct
ct0
e(t−t0)Fωnt0 .
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So consider the mapping

M(ψ) =
(ωt0 +

√
−1∂∂ψ)n

ωnt0
.

Clearly M(0) = 1, and our goal is to solve M(ψt) = ft := ct
ct0
e(t−t0)F for

|t− t0| << 1. The function spaces we need are as follows

Ck,α0 (M) := {ψ ∈ Ck,α(M) |
∫
M

ψωnt0 = 0}

Ck,α1 (M) := {f ∈ Ck,α(M) |
∫
M

fωnt0 =

∫
ωnt0}.

Since ∫
M

M(ψ)ωnt0 =

∫
M

(ωt0 +
√
−1∂∂ψ)n =

∫
M

ωnt0 ,

it is clear thatM : C3,α
0 (M)→ C1,α

1 (M). Next, we observe that TψC3,α
0 (M) =

C3,α
0 (M) and TfC1,α

1 (M) = C1,α
0 (M). To apply the inverse function theorem,

we need to compute the derivative.

Claim-1. D0M(η) = ∆ωt0
ψ.

Proof.

D0M(η) =
d

ds

∣∣∣
s=0
M(sη)

=
d

ds

∣∣∣
s=0

(ωt0 + s
√
−1∂∂η)n

ωnt0

=
d

ds

∣∣∣
s=0

ωnt0 + sn
√
−1∂∂η ∧ ωn−1

t0 +O(s2)

ωnt0

=
n
√
−1∂∂η ∧ ωn−1

t0

ωnt0
= ∆ωt0

ψ.

�

By Corollary ??, ∆t0
: T0C

3,α
0 (M) = C3,α

0 (M)→ Tf1C
1,α
1 (M) = C1,α

0 (M)
is an isomorphism, and so by the inverse function theorem there exist
C1,α neighbourhood V of ft and C3,α neighbourhood U of ψ such that
for all f ∈ V , there exists a solution to M(ψ) = f . In particular, there
exists a solution ψt to M(ψt) = ft if |t − t0| << 1. Moreover, since the
inverse G is continuous, if we choose |t− t0| << 1, we can also ensure that
ωt0 +

√
−1∂∂ψt > 0. We then put ϕ = ϕt0 + ψt − supM (ϕt0 + ψt). Clearly

ϕt is a C3,α solution to (*t). We claim that it is in fact smooth by using the
standard method of bootstrapping. Since this is a local issue, it suffices to
prove that the restriction to a coordinate neighbourhood is smooth. Taking
log on both sides of (*t) and differentiating with respect to ∂k we obtain

(gt)
ij̄∂i∂j̄(∂kϕt) = −(gt)

ij̄ ĝij̄;k + ∂kH,

where H is some smooth function. Since ϕt is in C3,α, and gt > 0, we also
have that g−1

t is in C1,α. Hence the right hand side is also in C1,α. Then
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∂kϕt satisfies and elliptic equation with coefficients in C1,α and right hand
side in C1,α. So by local Schauder estimates ∂kϕt is in C3,α. Similarly ∂l̄ϕt
is in C3,α, and so ϕt is in fact in C4,α. Going back, g−1

t is now in C2,α,
and hence ϕt in turn is in C5,α, and so on. This shows that ϕt is in fact
smooth.
• Case-2. λ < 0. In this case we can in fact work with the usual (unnormalised)

Hölder spaces and define the map M : C3,α → C1,α by

M(ψ) = log
( (ωt0 +

√
−1∂∂ψ)n

ωnt0

)
+ λψ.

The linearisation is then ∆t0 + λ, which is invertible by Corollary ?? since
λ < 0. The rest of the argument, including bootstrapping, is identical.

�
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4. Lecture-4: A priori estimates

In the previous lecture, we set up a continuity method to prove Theorem C and
proved that I is an open set. To complete the proof of Theorem C, we need to
prove some a priori estimates. For the sake of notational convenience we drop the
parameter t, and instead consider the following Monge-Ampere equation:

(CMA)


(ω̂ +

√
−1∂∂ϕ)n = eF−λϕω̂n

ω := ω̂ +
√
−1∂∂ϕ > 0

(λ = 0) supM ϕ = 0

The estimates we need are as follows. All the geometric quantities with respect
to ω̂ are denoted by a hat.

Proposition 4.1. Let (M, ω̂) be a compact Kähler manifold. Suppose a Kähler
metric ω satisfies

Ric(ω) = λω + ρ(1)

Λ−1ω̂ < ω < Λω̂,(2)

for some Λ > 0. Then there exists a constant C depending only on (M, ω̂), Λ and
|∇ρ|2ω̂ such that

|∇̂ω|2ω̂ ≤ C,
where ∇̂ is the Levi-Civita connection with respect to ω̂.

Proposition 4.2. Suppose ϕ ∈ C∞(M,R) solves (CMA). Then there exists

constants C,A > 0 depending only on (M, ω̂), supM |F | and infM ∆̂F such that

C−1e−A(ϕ−infM ϕ)ω̂ ≤ ω ≤ CeA(ϕ−infM ϕ)ω̂.

In particular, if ||ϕ||C0 ≤ c0, then ω satisfies (2) with Λ = CeAc0 .

Proposition 4.3. If ϕ ∈ C∞(M,R) solves (CMA) and λ ≤ 0, then there exists C
depending on (M, ω̂) and ||F ||C0 such that

||ϕ||C0(M) ≤ C.
Assuming these, we can now complete the proof of Theorem C.

Proof of Theorem C.. Recall the continuity method

(∗t)


(ω̂ +

√
−1∂∂ϕt)

n = cte
tF−λϕt ω̂n

ωt := ω̂ +
√
−1∂∂ϕt > 0

(λ = 0) supM ϕt = 0.

We have already proved that I := {t ∈ [0, 1] | (∗t) has a smooth solution} is non-
empty and open. To complete the proof, we need to show that this set is also
closed. So let tk ∈ I such that tk → T , and let ϕk := ϕtk solve the equation (∗t) at
t = tk. Then Propositions 4.1-4.3 imply that there exists a constant C such that
|∇̂ω|2ω̂ ≤ C. We then have

|∇̂∆̂ϕk|2 ≤ |∇̂ ¯̂∇∇̂ϕk|2 ≤ |∇̂ω|2ω̂ ≤ C,

and hence,ifα ∈ (0, 1), we have ||∆̂ϕk||Cα(ω̂) ≤ C. But then by Schauder estimates
and Proposition 4.3 we have a uniform bound on ||ϕk||C2,α(ω̂).

Claim. ||ϕk||C3,α(ω̂) is uniformly bounded.
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Proof. It is enough to obtain local bounds. Taking log and differentiating equation
(∗t) with respect to ∂a

(gtk)ij̄∂i∂j̄(∂a)ϕk + λ(∂aϕk) = −(gtk)ij̄ ĝij̄;a + ∂aH,

where H is a given smooth function, depending on ĝ and F . Since ||ϕk||C2,α(ω̂)

is uniformly bounded, and gtk ≥ Λ−1ĝ, ||gtk ||Cα(ω̂) is uniformly bounded. By

Schauder estimates ∂aϕk has uniformly bounded C2,α(ω̂) norm. One can argue
similarly for ∂b̄ϕk, and hence ϕk has uniformly bounded C3,α(ω̂) norms. �

Now, by Arzela-Ascoli, ϕk → ϕT ∈ C3,α′(ω̂) for some α′ < α. Clearly ϕT
satisfies (∗t) at t = T , and once again by a bootstrapping argument similar to the
one in the proof of Proposition 3.3, we have that ϕT ∈ C∞(M,R). �

4.1. C2-estimates. Note that since ω and ω̂ are positive, ω ≤ Λω̂ if and only if
trω̂ω ≤ C. Hence it is sufficient to estimate trω̂ω and trωω̂. The key estimate we
need is the following.

Lemma 4.4. There exists constants B,C > 0 depending on (M, ω̂), and infM ∆̂F
such that

∆ log trω̂ω ≥ −Btrωω̂ − C.

Assuming this we can complete the proof of the required C2-estimate.

Proof of Proposition 4.2. Since trωω̂ = n−∆ϕ, from the Lemma if we set A = B+1,
we have

∆(log trω̂ω −Aϕ) ≥ trωω̂ − C,

for some constant C. Suppose log trω̂ω − Aϕ takes the maximum value at p ∈ M ,
then by the maximum principle, trωω̂(p) ≤ C. We can assume that ω̂ at p is
Euclidean, and ω at p is diagonal with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. Then

n∑
i=1

1

λi
≤ C.

In particular, there exists a constant c0 such that λi > c0 for each i. From the
equation ωn = eF−λϕω̂n, the determinant Πn

i=1λi is uniformly bounded in terms
of ||F ||C0 and e−λϕ, and hence there is uniform upper bound λi ≤ Ce−λϕ(p). In
particular, trω̂ω(p) ≤ Cne−λϕ(p).

But then, since p is a point of maximum for log trω̂ω −Aϕ, we have

log trω̂ω ≤ Aϕ+ logC − λϕ(p)−Aϕ(p),

and so possibly by increasing A a bit,

trω̂ω ≤ CeA(ϕ−infM ϕ).

Again applying the same reasoning as above, and possibly increasing A, we also
have the reverse inequality

trωω̂ ≤ CeA(ϕ−infM ϕ).

�
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Proof of Lemma 4.4. We compute at a point p ∈M using normal coordinates with
respect to ω̂. That is, at p

ĝij̄ = δij̄ , ĝij̄;k = ĝij̄;l̄ = 0.

By a unitary change of coordinates, we can also assume that ω at p is given by the
diagonal matrix with positive eigenvalues {λi}. Putting u = trω̂ω we have

∆ log u =
∆u

u
− |∇u|

2

u2
.

We now compute

∆u = gij̄∂i∂j̄(ĝ
kl̄gkl̄)

= gij̄∂i(−ĝkb̄ĝab̄;j̄ ĝal̄gkl̄ + ĝkl̄gkl̄;j̄)

= −gij̄ ĝkb̄ĝab̄;ij̄ ĝal̄gkl̄ + gij̄ ĝkl̄gkl̄;ij̄

For the first term on the right,

−gij̄ ĝkb̄ĝab̄;ij̄ ĝal̄gkl̄ = −gīiĝkk̄;īigkk̄

≥ −B
∑
i,k

gīigkk̄

= −B(trω̂ω)(trωω̂).

Here B is an upper bound on the numbers ĝkk̄;īi, or more intrinsically, an upper
bound on the holomorphic sectional curvature of ĝ, that is,

R̂ij̄kl̄ ≤ B(ĝij̄ ĝkl̄ + ĝil̄ĝkj̄).

For the second term, we recall that

Rij̄kl̄ = −gkl̄;ij̄ + gab̄gkb̄;igal̄;j̄ ,

and so

gij̄ ĝkl̄gkl̄;ij̄ = −gij̄ ĝkl̄Rkl̄;ij̄ + gīigaāgkā;igak̄;̄i

= −ĝkl̄Rkl̄ + gīigaāgkā;igak̄;̄i.

Taking log and
√
−1∂∂ on both sides of (CMA), we have that

−Rkl̄ = Fkl̄ − λϕkl̄ − R̂kl̄,

and so

−ĝkl̄Rkl̄ = ∆̂F − λ∆̂ϕ− Ŝ

= ∆̂F − λ∆̂ϕ− Ŝ

= ∆̂F − λtrω̂ω + λn− Ŝ
≥ −Ctrω̂ω − C.

Putting all of this together, we have

∆u ≥ −B(trω̂ω)(trωω̂)− Ctrω̂ω − C + gīigaā|gkā;i|2.(3)

Finally, using the Cauchy Schwarz inequality

(trω̂ω)(trωω̂) ≥ n2,



18 V. V. DATAR

we have

∆ log u ≥ −Btrωω̂ − C −
C

trω̂ω
+
gīigaāgkā;igak̄;̄i

u
− |∇u|

2

u2

≥ −(B + C/n2)trωω̂ − C +
gīigaāgkā;igak̄;̄i

u
− |∇u|

2

u2
.

Claim.
giīgaā|gkā;i|2

u − |∇u|
2

u2 ≥ 0.

Proof. This follows from two applications of the Cauchy Schwarz inequality. First,
we compute

|∇u|2 =
∑
i

gīi∂i(trω̂ω)∂i(trω̂ω)

=
∑
i

gīi∂i(ĝ
kl̄gkl̄)∂i(ĝ

ab̄gab̄)

=
∑
i,k,a

gīigkk̄;igaā;̄i

Recall that gij̄ = λiδij̄ , and so in particular gīi = λ−1
i , and

|∇u|2 =
∑
i,k,a

λ−1
i gkk̄;igaā;̄i

(gīigaā|gkā;i|2)u =
(∑
i,k,a

λ−1
i λ−1

a |gkā;i|2
)(∑

p

λp

)
.

We now estimate

|∇u|2 =
∑
k,a

∑
i

gkk̄;i√
λi

gaā;̄i√
λi

≤
∑
k,a

(∑
i

λ−1
i |gkk̄;i|2

)1/2(∑
j

λ−1
j |gaā;j |2

)1/2

=
(∑

a

(∑
j

λ−1
j |gaā;j |2

)1/2)2

=
(∑

a

λ1/2
a

(∑
j

λ−1
j λ−1

a |gaā;j |2
)1/2)2

≤
(∑

p

λp

)(∑
a

∑
j

λ−1
j λ−1

a |gaā;j |2
)

≤
(∑

p

λp

)(∑
a,j,k

λ−1
j λ−1

a |gkā;j |2
)

This completes the proof of the claim, and hence the proof of the lemma.
�

4.2. C3-estimate. Just as in the case of the C2 estimate, the proof of the C3

estimate relies on the following differential inequality.

Lemma 4.5. There exists a constant C depending only on (M, ω̂), ||∇ρ||ω̂ and Λ

such that if S = |∇̂ω|2ω, then

∆S ≥ −CS − C.
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Proof of Proposition 4.1. Recall that we are assuming ω solves

Ric(ω) = λω + ρ

Λ−1ω̂ < ω < Λω̂,

As in the case of the C2 estimate, we need a barrier function u such that ∆u is
roughly S and u is bounded. We take u = trω̂ω. In the previous lecture we proved
the following differential ienquality

∆u ≥ −B(trω̂ω)(trωω̂)− Ctrω̂ω − C + gīigaā|gkā;i|2

≥ −C + gīigaā|gkā;i|2.
The second term is almost S. In fact in normal coordinates for ω̂, and diagonalising
ω, we have

S = gīigaāgkk̄|gkā;i|2 ≤ Λgīigaā|gkā;i|2,
and so

∆u ≥ −C + Λ−1S.

Then by Lemma 4.5

∆(S + (C + 1)Λu) ≥ S − C.
An application of maximum principle then gives a uniform upper bound on S. This
in turn gives a uniform upper bound on |∇̂ω|2ω̂ ≤ Λ3S, completing the proof of the
Proposition. �
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5. Lecture-5: C0-estimate

We prove Proposition 4.3 in this lecture, thereby completing the proof of Calabi
conjecture.

Proof of Proposition 4.3. The proof is a simple application of the maximum principle
for the case λ < 0, while it is much more involved for the λ = 0.

• Case-1 : λ < 0. In this case ω solves

(ω̂ +
√
−1∂∂ϕ)n = eF−λϕω̂n.

Let p ∈ M such that ϕ(p) = supM ϕ. Then by the maximum principle we
have

√
−1∂∂ϕ(p) ≤ 0, and so

ω̂n(p) ≥ eF−λϕ(p)ω̂n(p).

Thus e−λϕ(p) ≤ e− infM F or ϕ(p) ≤ ||F ||C0/(−λ). Similarly, we can obtain
a lower bound for ϕ.
• Case-2 : λ = 0. For simplicity, we rescale ω̂ so that

∫
M
ω̂n = 1, and set

ψ = ϕ−
∫
M

ϕω̂n.

Then ψ still satisfies

(4) (ω̂ +
√
−1∂∂ψ)n = eF ω̂n.

The proof relies on the elementary fact that

sup
M
|ψ| = lim

p→∞
||ψ||Lp(ω̂),

and that the sequence of Lp norms on the right is increasing. Multiplying
(4) by ψ|ψ|α−1 and integrating by parts∫
M

ψ|ψ|α−1(ω̂n − ωn) = −
∫
M

ψ|ψ|α−1
√
−1∂∂ψ ∧

n−1∑
j=0

ωjψ ∧ ω̂
n−1−j

= α

∫
M

|ψ|α−1
√
−1∂ψ ∧ ∂̄ψ ∧

n−1∑
j=0

ωjψ ∧ ω̂
n−1−j

≥ α
∫
M

|ψ|α−1
√
−1∂ψ ∧ ∂̄ψ ∧ ω̂n−1

= αn

∫
M

|ψ|α−1|∇̂ψ|2ω̂n

=
4nα

(α+ 1)2

∫
M

|∇̂ψ|ψ|
α−1

2 |2ω̂n

Note that, just as in the uniqueness proof, we again used Lemma 3.2 in
the third line. Now, the left hand side above can be bounded using the
equation, and so we obtain, the inequality

(5)

∫
M

|∇̂ψ|ψ|
α−1

2 |2ω̂n ≤ C (α+ 1)2

4α

∫
M

|ψ|αω̂n.
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By Sobolev inequality, if we let p = α+ 1, and β = n/n− 1, we get that if
p > 1,(∫

M

|ψ|pβω̂n
) 1
β ≤ Cp

(∫
M

|ψ|p−1ω̂n +

∫
M

|ψ|pω̂n
)

≤ Cp
((∫

M

|ψ|pω̂n
) p−1

p

+

∫
M

|ψ|pω̂n
)

≤ Cpmax
(

1,

∫
M

|ψ|pω̂n
)
,

Taking the pth root,

(6) max(1, ||ψ||Lpβ(ω̂)) ≤ (Cp)1/p max(1, ||ψ||Lp(ω̂)).

Let p0 = 2, pk+1 = pkβ, and Ak = max(1, ||ψ||Lpk (M,ω̂)).

logAk+1 ≤
logC

pk
+

log pk
pk

+ logAk

≤
( logC

2
+ log 2

) k∑
i=0

1

βi
+ log β

k∑
i=0

k

βk
+ logA0

≤ C +A0,

since all the series are convergent. Exponentiating and taking limit

max(1, sup
M
|ψ|) = lim

k→∞
Ak+1 ≤ CA0 = C max

(
1, ||ψ||L2(ω̂)

)
.

To control the L2 norm, by the Poincare inequality, inequality (5) with
α = 1, and Holder inequality∫

M

ψ2ω̂n ≤
∫
M

|∇̂ψ|2ω̂n ≤ C
∫
M

ψω̂n ≤ C
(∫

M

ψ2ω̂n
) 1

2

,

and so ||ψ||L2(ω̂) ≤ C. Going back to ϕ, we then have∫
M

ϕω̂n − C ≤ ϕ ≤
∫
M

ϕω̂n + C.

Since supM ϕ = 0, the right side gives a lower bound for integral of ϕ, and
then the left side gives a lower bound on infM ϕ, and we are done.

�

6. Lecture-6: The Fano case

We saw in the proof of Theorem C, there are two notable problems when λ > 0.
Firstly, the openness argument does not work, since ∆ + λ might have a kernel if
λ > 0, and hence need not be invertible. In fact if M is Fano and ω is Kähler-
Einstein, then the kernel of ∆+1 corresponds precisely to holomorphic vector fields.
The second problem is that the C0-estimate does not go through. The openness
issue is easy to fix, by simply choosing a different continuity method. So for the
rest of the lecture, we will assume that M is Fano, that is c1(M) > 0, and attempt
to solve the following equation:

(7) Ric(ω) = ω.
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If we now take a reference form α ∈ c1(M), then by the
√
−1∂∂-lemma, there exists

a function F such that

Ric(α) = α+
√
−1∂∂F.

Then ω = α+
√
−1∂∂ϕ solves (7) if and only if

(8)

{
(α+

√
−1∂∂ϕ)n = eF−ϕαn

ω := α+
√
−1∂∂ϕ > 0.

We consider the following continuity method

(**t)

{
(α+

√
−1∂∂ϕt)

n = eF−tϕαn

ωt := ρ+
√
−1∂∂ϕt > 0.

At the level of Ricci curvature, the corresponding equation is

(***t) Ric(ωt) = tωt + (1− t)α.

We let

I = {t ∈ [0, 1] | (8) has a smooth solution}.
Then by Theorem C, 0 ∈ I. For openness, we proceed as before. Suppose there is a
solution ϕt0 to (**t) at t = t0, then we consider the following mapM : C3,α → C1,α:

M(ψ) = log
(ωt0 +

√
−1∂∂ψ)n

ωnt0
+ tϕ.

Clearly M(0) = 0. Then it is easy to check that

D0M(ψ) = ∆ωt0
ψ + t0ψ.

To prove openness, we only have to show that the kernel of this map is trivial, and
this is accomplished by the following Lemma.

Lemma 6.1. If ω is a Kähler metric such that Ric(ω) > tω and λ1 is the first
non-zero eigenvalue of the Laplacian, then λ1 > t.

Proof. By the standard Bochner formula (see Week-2 assignment 7(c)), and our
assumption that Ric(ω) > tω,

∆|∇f |2 = |∇∇f |2 + 〈∇∆f,∇f〉+Rij̄∇if∇jf ≥ 〈∇∆f,∇f〉+ t|∇f |2.

If f is any eigenfunction, that is ∆f + λf = 0 with λ > 0, then

∆|∇f |2 ≥ (t− λ)|∇f |2.

The integral of the left hand side is zero, and hence (t− λ)|∇f |2 ≤ 0. Since λ > 0,
f is not a constant, and hence λ > t. �

Now, by (***t), if t0 < 1, Ric(ωt0) > t0ωt0 since α > 0, and so by the Lemma
∆ωt0

+ t0 has not kernel, and hence is invertible. The following proposition is a
consequence of the above discussion and propositions 4.2 and 4.1.

Proposition 6.2 (Aubin, Yau). There exists a solution to (8) if there exists a
constant C such that for any solution of (**t),

||ϕt||C0 ≤ C.
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Remark 6.3. Uniqueness of Kähler-Einstein metrics is obviously false, since Fano
manifolds have plenty of holomorphic vector fields. So if ω is a KE metric and ψ
is a biholomorphism generated by a holomorphic vector field, then ψ∗ω is also a
KE metric. In the late 1980s Bando-Mabuchi that this is the only obstruction to
uniqueness. In particular, they showed that if ω1 and ω2 are two solutions to (7),
then there exists a biholomorphism Ψ such that ω2 = Ψ∗ω1. There proof actually
involved solving the continuity backwards, and as a consequence one obtains a
converse to the above Proposition. Namely, that if there exists a KE, then one can
obtain a C0 bound along the continuity method.

6.1. Obstructions of Futaki and Matsushima and the YTD conjecture.
We denote the space of holomorphic vector fields on M by η(M). Locally any
ξ ∈ η(M) looks like

ξ = ξi
∂

∂zi
,

where each ξα is a local holomorphic function. We denote the space of biholomorphisms
of M by Aut(M), and it’s identity component by Aut0(M). One of the earliest
obstructions to the existence of KE metrics on Fano manifolds was found by
Matsushima in the 1950s.

Proposition 6.4 (Matsushima). If M is Fano and admits a Kähler-Einstein metric,
then Aut0(M) is reductive.

Corollary 6.5. P2 blown up at one or two points do not admit a KE.

To describe the obstruction discovered by Futaki, we first observe that if ω
is a Kähler metric, then iξω := gij̄ξ

i is a ∂-closed (0, 1) form, and since every
Fano manifold has finite fundamental group (a consequence of Calabi conjecture),

H0,1

∂
(M,C) = {0}, and hence there exists a function θξ ∈ C∞(M,C) (unique upto

a constant) such that √
−1∂θξ = iξω.

We then define the Futaki invariant by

(9) Futω(ξ) =

∫
M

θξ(Ric(ω)− ω) ∧ ωn−1.

It turns out that the Futaki invariant is in fact independent of the metric chosen
in c1(M).

Lemma 6.6. If ω1 and ω2 are two metrics in c1(M), then for all ξ ∈ η(M),

Futω2
(ξ) = Futω1

(ξ).

Hence we simply denote the Futaki invariant as Fut(ξ) without any reference to a
particular Kähler metric, and as a consequence if M admits a KE, then Fut(·) ≡ 0.

Conjecture 6.7. (Calabi) If M is Fano and has no non-trivial holomorphic vector
field, then it admits a Kähler-Einstein metric.

The conjectured was prove for Kähler surfaces by Tian [7] in the late eighties.
Unfortunately the above conjecture turned out to be false.

Remark 6.8. In 1997, Tian [8] proved that a certain Fano three-fold M , studied by
Mukai-Umemera, admits complex structures with no holomorphic vector fields and
also no KE. Enroute to proving this, he introduced the notion of K-stability which
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involved allowing the manifold to degenerate and computing a Futaki invariant on
a possibly singular normal Q-Fano variety. Since mid 80s, Yau had already been
advocating that the obstruction to existence of KEs on Fano manifolds must be
related to some algebro-geometric stability. Tian in his 1997 paper proceeded to
conjecture that a Fano manifold admits a Kähler-Einstein metric if and only if
it is K-stable. In early 2000’s Donaldson extended the definition of K-stability
to all pairs (M,L) of complex manifolds polarised with ample line bundles, and
conjectured that the existence of a constant scalar curvature Kähler metric in c1(L)
(of which KE metrics are special cases where L = K∗M ) should be equivalent to
K-stability. This (still open) central conjecture in the field is called the Yau-Tian-
Donaldson conjecture. The interested reader can refer to the excellent book [5] for
an introduction for this circle of ideas.

Definition 6.9. Let M be a Fano manifold. A special degeneration of M consists
of an embedding M ↪→ PNr by sections of K−rM and a C∗ subgroup of PGL(N,C)
such that the limit W := limt→0M is a normal variety. The C∗ action fixes W and
induces a holomorphic vector field w on W . We say M is K-stable if for all such
special degenerations

Fut(W,w) ≥ 0,

with equality if and only if W = g ·M for some g ∈ PGL(N,C).

In 2012 the YTD conjecture was finally settled for Fano manifolds.

Theorem 6.10 (Chen-Donaldson-Sun [2]). A Fano manifold M admits a Kähler-
Einstein metric if it is K-stable.

6.2. Kähler-Einstein metrics along the smooth continuity method. The
only if part had already been established by Tian for manifolds with no holomorphic
vector fields (in the same 1997 paper discussed above) and by Robert Berman in
general. The method of Chen-Donaldson-Sun used a continuity method through
Kähler-Einstein metrics with cone singularities. The main idea is to begin with a
conical Kähler-Einstien metric with small cone angle 2πβ along an anti-canonical
divisor, and then to deform this cone angle to 2π, thereby obtaining a smooth KE
metric in the limit. After their paper appeared, there still remained a question
as to whether one could prove Theorem 6.10 using the continuity method (**t).
This program was completed in 2015 by Gabor Szekelyhidi and the author [3],
by adapting the techniques developed by Chen-Donaldson-Sun. The advantage of
using the smooth continuity method, as opposed to the conical continuity method
is that we were able to obtain an equivariant version of the theorem, which has
been particularly useful in finding new examples of Kähler-Einstein manifolds.

Theorem 6.11. If M is equivariantly K-stable, then there exists a solution to
(**t) for all t ∈ [0, 1]. In particular, there exists a Kähler-Einstein metric.

A broad overview of the proof. Suppose the continuity method fails for the first
time at some time T . Then there exists a sequence ε0 < tk → T such that ωk := ωtk
solve

Ric(ωk) = tkωk + (1− tk)α.

In particular, Ric(ωk) > ε0ωk. Since the volumes of all these metrics are fixed, it
is well known, by a theorem of Gromov’s, that (M,ωk) converge in the Gromov-
Hausdorff sense to a compact metric space (Z, d). For sequences of Kähler-Einstein
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metrics, it was conjectured by Tian, and proved by Donaldson-Sun [4], that the limit
is normal, projective variety. This had been a major stumbling block in proving
the YTD conjecture for Fano manifolds. Indeed, in [2], Chen-Donaldson-Sun prove
an analogous result for conical Kähler-Einstein metrics. For the smooth continuity
method, Szekelyhidi [6] adapted the techniques of Chen-Donaldson-Sun and proved
the following.

Theorem 6.12. There exists a r >> 1 and embeddings Tk : M ↪→ PNr by
sections of K−rM which are orthonormal with respect to hermitian metrics hk, where

ωk = −
√
−1∂∂ log hk. Moreover the flat limit W of the family Tk(M) is a normal

projective variety homeomorphic to (Z, d).

The W obtained above, is then a candidate for the central fibre of a destabilising
special degeneration. A technical point is thatW is in the orbit closure of PGL(N,C),
the definition of K-stability requires the central fibre to be in the closure of a C∗
subgroup. In [2], this is done by applying the Luna slice theorem from algebraic
geometry to the pair (W,∆), where ∆ is a divisor in W such that W admits a KE
metric with cone singularities along ∆. In proving Theorem 6.11, one is forced to
consider pairs (W,β), where β is a (1, 1) current on W . This space is of course
infinite-dimensional and the Luna slice cannot be directly applied. This difficulty
is overcome in [3] by approximating β by currents that are concentrated along
divisors, that is,

β ∼
K∑
i=1

[Hi ∩W ],

and then applying Luna slice theorem to tuples (W,H1 ∩W, · · · , HK ∩W ). �
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Appendix A. Proof of Lemma 4.5

Though the original computation is due to Calabi himself, our proof follows
the simplified computations due to Phong-Sturm-Sessum. We begin with a simple
observation that if Hk

ij := Γkij − Γ̂kij = gkl̄∇̂igjl̄, then

S := |∇̂ω|2ω = gij̄gkl̄gab̄∇̂igkb̄∇̂jglā = gij̄gkl̄Ha
ikH

q
jlgqā = gij̄gkl̄gaq̄H

a
ikH

q
jl = |H|2,

where note that the norm is with respect to ω. We compute using normal coordinates
with respect to ω. It is not difficult to see that

∆|H|2 = |∇H|2 + |∇̄H|2 + Re〈∇a∇āH,H〉+ Re〈∇ā∇aH,H〉,

where 〈∇T, T 〉 = gpq̄g
ij̄gkl̄T pikT

q
jl for any section T of T ∗(1,0)M⊗T ∗(1,0)M⊗T (1,0)M.

Commuting the covariant derivatives, using the so-called Ricci identity (see Week-2
assignment for the corresponding formulae for one-forms and vector fields),

∇a∇b̄H −∇b̄∇aH = R k
ab̄p H

p
ij −R

p

ab̄i
Hk
pj −R

p

ab̄j
Hk
ip,

and so

∇ā∇aH = ∇a∇āH −R k
p H

p
ij +R p

i H
k
pj +R p

j H
k
ip

= ∇a∇āH − gkq̄Rpq̄Hp
ij + gpq̄Riq̄H

k
pj + gpq̄Rjq̄H

k
ip

But from the equation Rpq̄ = λgpq̄+ρpq̄, and the assumption that Λ−1ω̂ ≤ ω ≤ λω̂,
we see that Λ−1ω ≤ Ric(ω) ≤ Cω, and hence

Re〈∇ā∇aH,H〉 ≥ Re〈∇a∇āH,H〉 − C|H|2.
And so,

(10) ∆|H|2 ≥ 2Re〈∇a∇āH,H〉 − C|H|2.
The advantage of having an barred covariant derivative first, is that sinceH has only
unbarred entries, covariant differentiation is the same as ordinary differentiation.
To estimate the first term, we recall that R k

iāj = −Γkij;ā (and a similar formula for

R̂) and hence we compute

∇a∇āHk
ij = ∇a[Γkij;ā − Γ̂kij;ā]

= −∇aR k
iāj − ∇̂aR̂ k

iāj + (∇a − ∇̂a)R̂ k
iāj

= −∇iR k
aāj − ∇̂iR̂ k

aāj + (∇a − ∇̂a)R̂ k
iāj

= −∇iR k
j − ∇̂iR̂ k

j + (∇a − ∇̂a)R̂ k
iāj ,

where we used the second Bianchi identity ∇aR k
iāj = ∇iR k

aāj in the third line.
Now the difference in the connections is precisely the quantity H and hence

|∇̂iR̂ k
j |+ |(∇a − ∇̂a)R̂ k

iāj | ≤ C|H|+ C.

For the first term,
∇iR k

j = (∇i − ∇̂i)R k
j + ∇̂R k

j .

Now, from the equation, and the fact that ω and ω̂ are equivalent, this term can
be controlled by C|H| + C, where C might depend on |∇̂ρ|. Putting all of this
together,

|Re〈∇a∇āHk
ij〉| ≤ C|H|2 + C|H|,

and hence
∆|H|2 ≥ −C|H|2 − C|H| − C,
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from which the result follows since |H| can be estimated by C + C|H|2.
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[1] Aubin, T. Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull.
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