LECTURE-10

VED V. DATAR*

INDEX OF A CURVE
For a piecewise smooth (not necessarily close) curve, we defined the indez
or winding number around a point p ¢ v by
1 1

= — dZ.
21 Jyz—p

n(v,p) :

We have already seen that if «y is a circle traversed n number of times, then

n, p is inside the disc bounded by ~
n(y,p) =

0, otherwise

We now argue that this number is a measure of the change in the argument
along the curve. For simplicity, lets suppose that p = 0, and that the curve
v joins u = re? to v = re’® (note that v need not be a circular arc),
where 0, ¢ € (—m, 7). In particular, the curve lies in C\ {z < 0}. On this
domain, 1/z has a primitive, which we take to be the principal branch of
the logarithm. Then by the fundamental theorem
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n(v,0) = 27m./zdz:logv—logu:
v

p—10
o’

and so up to a factor of 27, the index measures the change in the argument.
The following theorem contains the basic properties of the index.

Theorem 1. Let v be any closed curve. Then
(1) n(vy,p) is an integer for any p € C\ .
(2) n(vy,p) is a continuous function on C\ v, and hence is locally con-
stant.
(3) If v is any curve lying in the interior of a disc D, then n(y,p) =0
for allp € C\ D.

Proof. (1) If we could take holomorphic logarithms freely, and argument
as above would suffice. Instead we will give a computational proof.
Let v : [0,1] — C be parametrization. Then

R A0
n(’y,p)—m/o mdt.
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Consider a function
1 / @)
§) = — ———dt.
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This is a continuous function on [0, 1], and is differentiable wherever

v/(t) is continuous (and hence at all but finitely many points) with

derivative

/ 1 ()

9(8) =g —v -
2miy(t) —p

Then, letting

G(s) = exp(—2mig(s))(v(s) — p),

at all but finitely many points, G'(s) = 0. This shows that G(s)
is locally constant, which together with continuity, forces it to be a
constant. In particular, G(1) = G(0), from which it follows (since

g(0) =1 and v(0) = (1)) that

2rigty _ V(0) —p
(1) —p

So g(1) = n(~,p) has to be an integer.

=1.

(2) Continuity is easy to check since p ¢ . Since the index is integer
valued it has to be then locally constant.
(3) If |p| >> 1, then clearly n(v,p) can be made really small. But then
since the index is locally constant, and C \ D is connected, it ought
to be zero for all p € C\ D.
[l

Remark 1. There is a deeper reason that the index is always an integer, and
a full explanation requires some knowledge of covering space theory. If a € C
does not lie on 7y : [0,1] — C, we can think of v as a curve in C! := C\ {a}.
Then it follows from standard covering space theory that v has a “lift” to
a curve 7 : [0,1] — C such that €>™") = () — a. The relevant jargon is
that exp : C — C* is a covering space map. Now additionally if v is closed,
then y(1) = v(0), and hence ¥(1) — 7(0) is an integer. On the other hand,
by chain rule, v'(t) = 2mie*™ 15/ (t), and hence

YIS S )
¥(t) = pEr

Integrating both sides we see that

1 /
2330 -30 =5 [ Ha= [ mnia)
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T 2mi (t) —a z—a

and hence n(y,a) is an integer.



THE GENERALISED CAUCHY THEOREM

A chain is a formal linear combination of curves v = a1y + -+ + apVn,
where a; € Z and each ~; is a regular curve. We interpret ay as y traversed
a times if ¢ > 0 and « traversed in the the reverse direction —a times if
a < 0. Chains can be then added in an obvious way. The union of the set
theoretic images of ; is called the support of v and denoted by Supp(y). A
chain is called a cycle if each of it’s components v; is a closed curve. We can
extend the definition of the index n(y,p) for a cycle v and a point p that
does not lie on any of the components of v. Then it has the same properties
as in Theorem 1. Additionally, we have the linearity property that

n(y1 +7v2,p) = n(y1,p) + n(y2,p).

We say that a chain « is homologous to zero in 2, and write v ~q 0 (or
v ~ 0(mod(?)), if for any point a € Q¢ n(v,p) = 0. We also say that ~; is
homologous to v2 in 2 and write 1 ~q 72 if 1 — 72 ~q 0, or equivalently
if n(y1,p) = n(y2,p) for all p € Q°. Note that if Q@ C Q' then v ~q 0
implies that v ~qs 0, but the converse need not be true as can be seen in
the example below.

Example 1. Consider the disc D3(0) and the annulus A;2(0) = {z €
C |1 < |z| < 3}. By Cauchy’s theorem for discs, any curve v in D3(0) is
homologous to zero. On the other hand the curve y(t) = 2e*™ ¢ € [0,1] is
NOT homologous to zero in Ay 2(0). This is because n(vy,0) =1 # 0.

Now we are ready to state the most general form of Cauchy’s theorem.

Theorem 2 (Generalised Cauchy’s theorem). If f : Q0 — C is holomorphic

and v ~q 0, then
/ f(z)dz=0.
v

More generally, if v1,7v2 are curves in ) such that v, ~q 72, then
/ f(z)dz= | f(z)d=.
7 Y2

In other words, Cauchy’s theorem says that if the integrals of the holo-
morphic functions 1/(z — a) is zero on a closed curve in 2, then the integral
of any holomorphic function on 7 is zero.

Proof. We first assume that §2 is bounded. For a small § > 0, we cover the
plane with a net consisting of squares with sides parallel to the axes, and
length §. Since € is bounded, and if § > 0 is chosen sufficiently small, there
exists a finite set of number of cubes @)1, -+, Qx such that

(1) The collection of squares {Q1,---,Q;} are all the squares in the net
which lie completely inside €2. That is, if () is a square in the net,
then @ = @); for some j if and only if Q C .

(2) 7 0= (UYL, @)



Consider the cycle
Ts = 0Q;
J

where the boundary of each @); is oriented in the anti-clockwise direction.
Then I'y is equivalent to 025 in the sense that for any function

f(z)dz = f(z)dz,
Ts Qs
since the integrals over the common boundaries cancel.

Now, let v be a cycle homologous to zero in Q. Let ¢ € Q\ s, and let
@ be a square in the net such that ¢ € Q. By definition of Q5, Q # Q; for
any j. Again, by our choice of the squares that make up s, there exists
a point p € Q N Q°. Since (p ¢ 2 and v ~q 0, we have that n(y,(y) = 0.
But then by continuity, since {y and ¢ can be joined by a straight in () and
hence not intersecting v, we have n(vy, () = 0. In particular, n(vy,{) = 0 for
all ¢ € 09Qs.

Suppose now that f(z) is holomorphic on Q. For any z € ono, we have

2mi Joq; C — = 0, otherwise,
and hence

(0.1) F(z) = /F 1) g

T o s C—2
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Since jo was arbitrary, (0.1) holds for all z € U; Q3. But since both sides are
continuous in z, clearly (0.1) must hold on all of Q5. As a consequence,

[yf(Z)dZ—/y<21m 5 gf(_@z ac) dz.

By Fubini’s theorem (which can be applied since the integrand is continuous

in both z and (),

/wf(z) iz = /Fa f(C)(% /7 Cd_zz) d¢ = . f(Qn(v, Q) d¢ =o0.

Finally, if © is not bounded, consider a large disc Dg(0) which contains
supp(7) in the interior, and let Q" = QN Dg(0). Then since v ~p_ (o) 0, one
can easily see that v ~q/ 0, and the previous argument then applies to €/
completing the proof. O

Using the generalised Cauchy theorem, we can prove the following gener-
alisation of the CIF.

Theorem 3 (Generalised Cauchy integral formula (GCIF)). Let f € O(2),
and v C Q a cycle. If v ~q 0, then for any z € Q \ Supp(v),

. 2)) = g [ 2 ac
Y

Proof. Fix a z € Q\Supp(y), and let ¢g > 0 such that D,,(z)NSupp(y) = ¢.
For € € (0,¢9), let C; be the circle centred at z with radius e.
Claim. For every € € (0,¢0), ¥ ~qx n(7,2)Ce, where as usual Q} = Q\ {z}.

Proof of the Claim. We need to prove that for any ¢ € C\ QF,

(0.2) n(v,¢) = n(y, 2)n(C:, ).

First suppose ¢ € C\ Q. Then in particular, ¢ lies outside D.(z) and hence
n(Cs,¢) = 0. On the other hand since vy ~q 0, we also have n(v, () = 0, and
hence (0.2) is verified. The only other possibility is that ( = z. But then
n(Cs,¢) = 1, and hence again (0.2) is verified.

O

Now, applying Cauchy’s theorem to the holomorphic function f(¢)/(¢—z)
on QF, we see that for all € € (0, ),

(0.3) ;MLgfldC:ngZ;iZ) /C éf(_él a“.

The integral on the right is n(v,z)f(z) by the CIF for discs, and we are
done. But it is in fact possible to avoid the CIF altogether, and in the
process provide a second proof for the CIF on discs. The argument is as
follows. Given any n > 0, by choosing ¢ << 1, we can make sure that

1f(O) = fR) <n
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for all ¢ € C.. Then

o £l

Hence from (

Q- _
27rz/§— d¢ =n(y,z )llm./szdﬁ—n(’y,z)f(z).

SIMPLY CONNECTED DOMAINS

There are many equivalent ways of defining simply connected domains.
Following Ahlfors, we take a slightly non-standard route. Consider the
sphere

S?={(z,y,2) €R® | 2® +¢y* + 22 =1}.
We denote it’s north pole by N = (0,0, 1), and south pole by S = (0,0, —1).
Then consider the stereographic projection ®x : S? \ {N} — C defined by
T + 1y

®(x7y7z): 1_2'

Then @5 is a bijection, and is in fact a homeomorphism. We can thus
identify S? as a one-point compactification of C, and call it the extended
complex plane, and think of N as the “point at infinity”.

We then say that a domain Q2 C C is simply connected if it is connected,
and S? \ Q is also connected. We note that this is not a commonly used
definition since it does not work in higher dimensions. In the next lecture,
we will provide equivalent characterisations, one of which will be what is the
modern “textbook” definition.

Example 2. A disc, C itself, and half planes are simply connected. A
parallel strip, say {z | a < Im({) < b} is also simply connected. This shows
the tmportance of taking the complement of ) in the extended plane, rather
than C itself. Similarly C\ {¢ < 0} is also simply connected. In this case
the complement of the set in the extended plane is the complement of half
a great circle in S?. On the other hand the complement of a line L passing
through the origin in C in the extended plane is an entire great circle, and

hence C\ L is not simply connected. Similarly, C* is not simply connected,
since S? \ C* = {N, S}

* DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE (IISC)
Email address: vvdatar@iisc.ac.in



