
LECTURE-11
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Characterisations of simply connected sets

Recall that a connected subset Ω ⊂ C is called simply connected if the
complement in the extended complex plane is also connected. We now pro-
vide several equivalent characterisations of being simply connected. First
we need to introduce two important notions.

Recall that a curve γ : [a, b]→ Ω is a simple, closed curve if γ is injective
on (a, b) and γ(a) = γ(b). Such curves are called Jordan curves, and their
name stems from the following historically significant theorem.

Theorem 1 (Jordan curve theorem). Let γ be a Jordan curve and C be it’s
image. Then it’s complement C \ C consists of exactly two open connected
subsets. One of these components is bounded while the other is unbounded.

The bounded component is called the interior and the unbounded com-
ponent is called the exterior, denoted respectively by int(γ) and ext(γ).
While intuitively obvious, the proof is extremely non-trivial. So much so
that the the theorem is notorious for numerous incorrect proofs from well
known mathematicians. In fact it will not be an exaggeration to say that
attempts to prove this theorem led to the modern development of algebraic
topology.

We also need to introduce the notion of homotopy. We say that a closed
piecewise regular curve γ : [0, 1]→ Ω is contractible, or null homotopic in Ω
if there exists a point p ∈ Ω and a continuous function H : [0, 1]× [0, 1]→ Ω
such that {

H(0, t) = γ(t), H(1, t) = p,∀t ∈ [0, 1]

H(s, 0) = H(s, 1), ∀s ∈ [0, 1].

We use the notation γs(t) := H(s, t).

Example 1. (1) Let D be a disc centred at p. Then for every curve γ,
consider the homotopy

H(s, t) = (1− s)(γ(t)− p) + p.

Then H(1, t) = p and hence γ is null homotopic. More generally
any convex domain has the property that every closed curve is null
homotopic. To see this, let γ be an aribitrary closed curve. Then
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(2) On the other hand, consider the curve γ(t) = eit in the annulus
A0,2(0) := {z | 0 < |z| < 2}. Then γ is not null-homotopic, as can
for instance be seen using the theorem below.

We then have the following fundamental result.

Theorem 2. Let Ω ⊂ C be a connected set. Then the following are equiva-
lent.

(1) Ω is simply connected.
(2) For every Jordan curve γ in Ω, int(γ) ⊂ Ω.
(3) For all cycles γ in Ω, γ ∼Ω 0.
(4) (Cauchy theorem for simply connected domains) For all holomorphic

functions f ∈ O and all cycles γ in Ω,∫
γ
f(z) dz = 0.

(5) Every closed piecewise regular curve is null homotopic.

We need to use the following crucial lemma which we state without proof.

Lemma 1. Let γ be a piecewise regular curve which is null homotopic. Then
one can choose the homotopy H such that each γs is piecewise regular.

Proof. The implication (2) ⇐⇒ (3) is a consequence of the generalised
Cauchy theorem. W

• (1) =⇒ (2). We can assume that Ω 6= C for else the implication is
trivial. Suppose a ∈ int(γ) ∩ Ωc. Then since Ω is simply connected,
S2 \ Ω is connected, and hence there exists a p ∈ Ωc ∩ ext(γ), and
a path σ lying in Ωc and connecting a to p. But since int(γ) is
connected this is a contradiction.
• (1) =⇒ (3). Let γ be a cycle in Ω and p /∈ Ω. Since S2 \ Ω is

connected, there is a sequence of points pn such that |pn| → ∞ and
there is a path σn from p to pn. Since limn→∞ n(γ, pn) = 0 and
index is locally constant, this implies that n(γ, p) = 0.
• (3) =⇒ (1). Suppose Ω is not simply connected. Then S2 \ Ω =
A ∪ B, where B is the component at infinity, and A is a compact
(possibly disconnected) set. Let

δ := inf{|z − w| | z,∈ A, w ∈ B}.

Then δ > 0. Now we cover the entire plane with a net N of squares
of a fixed side length δ/4 (any side length strictly smaller than δ/

√
2

will do). We choose the net so that a certain square, say Q1 has the
point a ∈ A at it’s centre. Let Q1, · · · , QN be the squares whose
interiors have a non-empty intersection with A, and let

Γ = ∂
(
∪Nj=1 Qj

)
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oriented in an anticlockwise direction. Note that

n(∂Qj , a) =

{
1, j = 1

0, j > 1,

and hence n(∂Γ, a) = 1, since the integrals over the common bound-
aries vanish. But then since Γ clearly does not meet B, we have
found a cycle in Ω such that n(Γ, a) 6= 0 but a ∈ Ωc. This is a
contradiction.
• (2) =⇒ (1). Suppose Ω is not simply connected, then the Γ pro-

duced above gives a Jordan curve whose interior is not completely
contained inside Ω.
• (4) =⇒ (2). It is enough to prove that every closed smooth curve

that index zero. Let γ be one such curve, and let p ∈ Ωc. There
exists a homotopy H : [0, 1] × [0, 1] → Ω contracting γ to a point
a ∈ Ω. For s ∈ [0, 1], consider the function

f(s) :=
1

2πi

∫ 1

0

γ′s(t)

γs(t)− p
dt.

Note that the definition makes sense because of the Lemma above.
Now, since p ∈ Ωc, clearly f(s) is a continuous function. Moreover,
f(1) = 0, and hence f(0) = n(γ, p) = 0.
• (2) =⇒ (4). Since this implication will not play any further role in

the course, we simply direct the reader to the argument on page 252
of Complex Analysis by Theodore Gamelin.

�

An important consequence of this is the following.

Theorem 3. Let Ω be a simply connected domain and f ∈ O. Then f has
a primitive on Ω.

Proof. The proof is along the lines of the proof for existence of primitives
on disc that was used in the proof of Cauchy’s theorem. So we fix a p ∈ Ω,
and define

F (z) =

∫
γz

f(w) dw,

where the integral is along some path γz joining p to z. If we choose another
path γ̃z joining the two points, then γz − γ̃z will form a cycle. Since the
domain is simply connected, γz ∼Ω γ̃z, and hence the integral of f along
both would be the same. Hence our definition is actually independent of
the path. By openness of Ω, for any h small, the straight line joining z to
z + h will lie entirely in Ω, and we call this path as l. Then γz+h − l and
γz are both piecewise smooth paths joining p to z, so once again by simple
connectedness of Ω and Theorem 2∫

γz+h

f(w) dw −
∫
l
f(w) dw =

∫
γz

f(w) dw,
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or equivalently

F (z + h)− F (z) =

∫
l
f(w) dw.

Then the same argument as in the proof of Theorem 2.1 in Lecture-7 implies
that F (z) is holomorphic with F ′(z) = f(z).

�

Cauchy’s theorem for multiply connected domain

A connected domain Ω ⊂ C is said to be n-connected if it’s complement in
the extended complex plane has n-connected components. So for instance, a
simply connected set is 1-connected, and an n-connected set has n−1 number
of “holes”. Our convention will be to label the components as A1, · · · , An,
where An is component containing the north pole (or the point at “infinity”).
Using the argument in the proof of the implication (2) =⇒ (1) in Theorem
2 we obtain the following.

Theorem 4. For every i = 1, · · · , n− 1, there exists a cycle γi such that

(0.1) n(γi, p) =

{
1, p ∈ Ai
0, p ∈ Ωc \Ai.

Moreover we have the following observations.

(1) The set {γ1, · · · , γn} is a linearly independent set, in the sense that∑n
i=1 ciγi ∼Ω 0 if and only if ci = 0 for all i.

(2) The set {γ1, · · · , γn} is a spanning set, in the sense that if γ is any
other cycle in Ω, then

γ ∼Ω c1γ1 + · · · cn−1γn−1,

where ci = n(γ, pi) for any pi ∈ Ai.
(3) For any f ∈ O(Ω), we have∫

γ
f(z) dz =

n−1∑
i=1

n(γ,pi)

∫
γi

f(z) dz,

where (p1, p2, · · · , pn−1) is any collection of points in A1 × · · ·An−1.
(4) If {σ1, · · · , σm} is a linearly independent spanning set, then m = n.

We call the collection {γ1. · · · , γn} the homology basis for Ω. In general
there will be multiple choices of homology bases, but by an elementary
theorem in linear algebra, all of these must be n in number. In fact, if

Example 2. Consider the domain Ω := D2(0) \ {−1, i, 1}. Then clearly the
domain is 4-connected. In fact if we label the points by p1 = −1, p2 = i, p3 =
1, then Ai = {pi} for i = 1, 2, 3 and A4 = S2 \D2(0). Let γi be given by

γi(t) = pi +
1

2
eit.
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Clearly n(γi, pi) = 1. On the other hand if p ∈ Ωc \ {pi}, then p lies outside
D1/2(pi) and hence n(γi, p) = 0. Hence by the above theorem, {γ1, γ2, γ3}
forms a homology basis for Ω.

As a consequence of the above result, we have the following. We say that
a Jordan curve γ is positively oriented if while the curve is traversed, int(γ)
remains to the left.

Corollary 1. Let Γ,Γ1, · · · ,Γn be positively oriented, pairwise non inter-
secting, piecewise smooth Jordan curves such that Γj ⊂ int(Γ) for all j =

1, · · · , n. Let Ω = int(Γ) ∩
(
∩nj=1 ext(Γj)

)
. Let f be a function that is

holomorphic in a neighbourhood of Ω. Then∫
Γ
f(z) dz =

∑
j

∫
Γj

f(z) dz.

Proof. Firstly, one can construct Jordan curves C,C1, · · · , Cn such that
int(Γ) ⊂ int(C) and int(C) ⊂ int(Γ) for all i, and such that f is holo-

morphic in Ω′ := int(C) ∩
(
∩nj=1 ext(Cj)

)
which of course contains Ω. Let

pi ∈ int(Ci). It is then easy to check that Γ1, · · · ,Γn forms a homology
basis for Ω′ and the result then follows from Theorem 4. Note that con-
structing the Jordan curves Ci is non-trivial. If Γi is smooth, then one can
construct Ci by perturbing slightly in the direction of the inner normal (and
similarly C be perturbing Γ a little bit along the outer normal). But since
our curves are only piecewise smooth, extra care must be take to “round
off”the “corners”. �

A real variable integral. We will now apply Cauchy’s theorem to com-
pute a real variable integral. Later in the course, once we prove a further
generalization of Cauchy’s theorem, namely the residue theorem, we will
conduct a more systematic study of the applications of complex integration
to real variable integration. For now, let us compute∫ ∞

−∞

cosx

1 + x2
dx.

This is an improper integral which is convergent, so by definition∫ ∞
−∞

cosx

x2
dx = lim

R→∞

∫ R

−R

1− cosx

x2
dx,

Consider now the function

f(z) =
eiz

1 + z2
.

This is a holomorphic function on C\{i}. Moreover, on the real line the real
part of this function is precisely the function that we are looking to integrate.
Now consider a contour ΓR := {z ∈ C | |z| = R, Im(z) > 0} ∪ {(x, 0) | x ∈
(−R,R)} oriented in the anti-clockwise direction. Let Cε; = {|z− i| = ε} be
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a small circle around i. Then for R >> ε, we clearly have that ΓR ∼C∗
i
Cε,

and hence by Theorem 4,∫
ΓR

f(z) dz =

∫
Cε

f(z) dz.

Now note that

f(z) =
g(z)

z − i
,

where g(z) = eiz/(z+i) is holomorphic in a neighbourhood of the disc Dε(i),
and hence by the Cauchy integral formula (applied to g(z)),∫

Cε

f(z) dz =

∫
Cε

g(z)

z − i
dz = 2πig(i) =

π

e
.

Letting SR be the semi-circle {z ∈ C | |z| = R, Im(z) > 0}, we see that∫
ΓR

f(z) dz =

∫
γR

f(z) dz +

∫ R

−R

eix

1 + x2
=

∫
γR

f(z) dz +

∫ R

−R

cosx

1 + x2
,

where we have used the fact that sinx is an odd function. On γR we claim
that ∣∣∣1− eiz

z2

∣∣∣ ≤ 2

R2
.

To see this, for z ∈ γR, we can write z = x+iy with y > 0. So |eiz| = e−y < 1,
and hence by triangle inequality |1 − eiz| < 2 which proves the claim since
|z| = R on γR. Using this we can estimate that∣∣∣ ∫

γR

1− eiz

z2
dz
∣∣∣ ≤ 2

R
len(γR) =

2π

R
→ 0

as R→∞. So the contribution on γR goes to zero as R goes to infinity, and
hence ∫ ∞

−∞

cosx

1 + x2
=
π

e
.
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