
LECTURE-12

VED V. DATAR∗

The logarithm

The purpose of this lecture is twofold - first, to characterize domains on
which a holomorphic logarithm can be defined, and second, to show that
the only obstruction to defining a holomorphic logarithm is in defining a
continuous logarithm. From henceforth, we let O∗(Ω) be the set of nowhere
vanishing holomorphic functions on Ω. For instance, ez ∈ O∗(C).

To set the stage, let us revisit the difficulties we had in defining a holo-
morphic logarithm. For z = reiθ, consider the function

(0.1) log z = log |z|+ iθ,

where, for instance, we can let θ ∈ [θ0, θ0 + 2π). If arg p = θ0, and we
traverse a circle of radius |p| centred at 0 and return to the point p, the
argument goes from θ0 to θ0 + 2π, and hence the log z does not return to
the original value. In other words log z as defined is not continuous. On the
other hand, if we return to p along a small circle not containing 0 in the
interior, then the argument does return to θ0, and log z does not jump in
value. The difference between the situations if of course that the first curve
goes around 0 while the second does not. Thus logarithm is an example of
a multivalued function, and zero in this case is called a branch point.

In general, we can consider any holomorphic function f : Ω→ C∗. Then,
a holomorphic function g : Ω → C (if it exists) is called a branch of the
logarithm of f , and denoted by log f(z), if

eg(z) = f(z)

for all z ∈ Ω. A natural question to ask is the following.

Question 0.1. Given a holomorphic function f : Ω → C∗, when can we
define a holomorphic branch of log f(z).

From the point of view of the Cauchy theory, the multivalued behaviour
of the logarithm function is esentially because 1/z, which would be the
derivative of a holomorphic logarithm function, does not integrate out to
zero around curves that contain the origin in the interior. Keeping this in
mind, we have the following basic theorem.
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Theorem 0.1. Let Ω be a connected domain, and f ∈ O∗(Ω) such that∫
γ

f ′(z)

f(z)
dz = 0

for all closed loops γ ⊂ Ω.

• Then there exists a holomorphic function g : Ω → C, denoted by
g(z) = log f(z), such that

eg(z) = f(z).

• g′ = f ′/f , and hence for any fixed p ∈ Ω,

g(z) = g(p) +

∫ z

p

f ′(w)

f(w)
dw.

Remark 0.1. Note that different choices of g(p) corresponding to the count-
able number of solutions to ez = f(p) give different formulae for g(z), all
of which differ by integral multiples of 2πi. Conversely, if g1 and g2 are
two logarithms, then they have to differ by a multiple of 2πi. The various
logarithm functions are called branches.

Theorem 0.1 above combined with Cauchy’s theorem for simply connected
domains gives the following.

Corollary 0.1. Let Ω be a simply connected domain.

(1) Then for any f ∈ O∗(Ω), there exists a holomorphic log f(z) with
(log f)′ = f ′/f , and hence

log f(z) = log f(p) +

∫ z

p

f ′(w)

f(w)
dw,

w here log f(p) is any solution to ez = f(p).
(2) In particular, if 0 /∈ Ω, then there is a holomorphic branch of log z

on Ω with (log z)′ = 1/z. Moreover, for any p ∈ Ω,

log z = log p+

∫ z

p

1

z
dz,

where we integrate along any path from p to z, and log p is any
solution to ez = p.

Proof of Theorem 0.1. Fix a point p ∈ Ω, and let g(p) be a solution to

eg(p) = f(p). Since f(p) 6= 0, such a solution always exists. We then define
g(z) by

g(z) = g(p) +

∫ z

p

f ′(w)

f(w)
dw,

where we integrate over any curve joining p and z. By the hypothesis, this
is independent of the path chosen. Then, by the same argument used before
(as in the proof of Theorem ), g(z) is holomorphic with

g′(z) =
f ′(z)

f(z)
.
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Now, consider the function F (z) = e−g(z)f(z). Then

F ′(z) = −eg(z)g′(z)f(z) + e−g(z)f ′(z) = 0.

Since Ω is connected, this implies that F (z) is a constant, and hence F (z) =
F (p) = 1. This completes the proof. �

Recall that the branch of log z defined by (0.1) is not even a continuous
function over C∗. This is not a coincidence. Our next theorem, says that
continuity in fact, is the only obstruction to define a holomorphic logarithm.

Theorem 0.2. Let Ω ⊂ C and g : Ω → C be continuous. If eg(z) is holo-
morphic, then so is g(z).

In other words if f(z) is holomorphic, and we can define a continuous
log f(z), then log f(z) is automatically holomorphic.

Proof. Let f(z) = eg(z), which by the hypothesis, is holomorphic, and fix a

p ∈ Ω. There is a δ > 0 such that Dδ(p) ⊂ Ω and a holomorphic function

gp(z) on Dδ(p) such that egp(z) = f(z). Then for all z ∈ Dδ(p),

g(z)− gp(z)
2πi

∈ Z.

Now, since g(z) is continuous,
g(z)−gp(z)

2πi is a continuous function on Dδ(p)
which only takes integer values, and hence has to be a constant. That is,

g(z) = gp(z) + 2πin,

for some fixed n ∈ Z. But then g(z) has to be holomorphic in Dδ(p), since
gp(z) is holomorphic, and hence is in complex differentiable at p. Since p
was arbitrary, this completes the proof of the theorem.

�

Some examples

Somewhat vaguely, for a (multi-valued) function g(z), the point z = a
is defined to be a branch point if g(z) is discontinuous while traversing an
arbitrarily small circle around the point. We define infinity to be a branch
point if z = 0 is the branch point of g(1/z). An alternate way is to consider
a curve “enclosing” infinity. This is a large curve that contains all the other
branch points in it’s interior. Then infinity is a branch point if along this
large curve, the function g(z) is discontinuous. A branch cut is a union of
curves such that g(z) defines a single valued holomorphic function on the
complement. Branch cuts should usually connect branch points to prevent
the possibility of going around branch points and making the function value
jump.
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Principal branch of the logarithm. Since C \ {Re(z) ≤ 0} is simply
connected, this immediately implies that there is a holomorphic logarithm
on that domain. The principal branch of the logarithm is defined to be the
one with

log 1 = 0.

By Theorem 0.1, for any z ∈ C \ {Re(z) ≤ 0}, we then have

log z =

∫ z

1

1

w
dw,

where we integrate over any piecewise smooth path from 1 to z. Suppose
z = reiθ, then one such path is C = C1 + C2 where C1 is parametrized by
z1(t) : [0, 1]→ C with z1(t) = tr+(1−t), and C2 is given by z2(t) : [0, θ]→ C
where z2(t) = ree

it
So C is simply the path going first from 1 to r along the

x-axis, and then the circular arc to z. Then∫
C1

1

w
dw =

∫ 1

0

r − 1

t(r − 1) + 1
dt = log(t(r − 1) + 1)

∣∣∣t=1

t=0
= log r,

where the log is the usual logarithm defined on real numbers. On the other
hand, ∫

C2

1

w
dw = i

∫ θ

0
dt = iθ.

So the principal branch of the logarithm is given by

log z = log r + iθ,

where θ ∈ (−π, π). We end with the following remark.

Remark 0.2. Unlike the real logarithm, in the complex case, in general

log z1z2 6= log z1 + log z2.

For example, let z1 = e3πi/4,z2 = eπi/2 and log z be the principal branch.
Then log z1 = 3πi/4 and log z2 = πi/2. But z1z2 = e5πi/4 = e−3πi/4 (remem-
ber the range of arg is (−π, π], and so log z1z2 = −3πi/4 6= log z1 + log z2.
Similarly, even though elog z = z for all z, log ez 6= z generally, again due to
the periods of ez.

Branch cut for log (z2 − 1). The points where z2 − 1 = 0, namely z =
±1 are certainly branch points. Any branch cuts should include these two
points. To see that infinity is also a branch point, note that the logarithm
should be defined as a primitive of

2z

z2 − 1
=

1

z + 1
+

1

z − 1
.

It is clear that as we integrate along a curve of radius R > 1 around the
origin, both terms will make a contribution with the same sign, and hence
the integral will not be zero. In other words if we define log as a primitive
of 2z

z2−1 , it will have a jump if we traverse a large curve. Hence ∞ is a also
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branch point. Possible branch cuts, that will prevent going around z = ±1
or z =∞ are

(−∞, 1] or (−∞, 1] ∪ [1,∞) or [−1,∞).

Of course there are infintely many choices of branch cuts. Each of the above
branch cuts renders the domain simply connected, and hence a holomorphic
branch does exist.

A convenient way to write down a formula for the branch is by using
“double polar coordinates”. That is, we let

z = −1 + r1e
iθ1 = 1 + r2e

iθ2 .

If we restrict the “phases” θ1, θ2 to be in the usual range (−π, π), then using
the principal branch of the log we obtain

log (z + 1) = log r1 + iθ1

log (z − 1) = log r2 + iθ2.

Adding up these two we see that

(0.2) g(z) = log r1 + log r2 + i(θ1 + θ2)

does define a branch of log (z2 − 1) since it is easy to see that eg(z) = z2−1.

Claim. g(z) defines a holomorphic branch of log (z2 − 1) on C \ (−∞, 1].

By Theorem 0.2 it is enough to check that it defines a continuous branch.
But this is obvious since θ1 is continuous everywhere except z ≤ −1 and θ2
is continuous everywhere except z ≤ 1, and since these points are removed
in the branch cut, g(z) is continuous everywhere else.

If we instead, restrict θ1 ∈ (−π, π] and θ2 ∈ (0, 2π), then formula (0.2)
defines a holomorphic branch on the complement of the branch cut (−∞, 1]∪
[1,∞). The reader should work these out carefully.

Branch cuts for log
(
z+1
z−1

)
. A holomorphic definition would have primitive

d

dz
log
(z + 1

z − 1

)
=

1

z + 1
− 1

z − 1
.

Clearly z = ±1 are branch points. To analyze branching at infinity, consider
a large disc DR(0) with R > 2. Then both the terms contribute an integral
of 2πi but with opposite signs, and hence the integral vanishes. In other
words the argument does not change as we traverse this big circle. Hence
infinity is NOT a branch point. Hence we can then choose the branch cut
to be [−1, 1], even though C \ [−1, 1] is not simply connected.

Again, lets analyze this using the double polar coordinates z = −1 +
r1e

iθ1 = 1 + r2e
iθ2 , This time let θ1, θ2 ∈ [−π, π), and define

g(z) = log r1 − log r2 + i(θ1 − θ2).
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Clearly this defines a branch of log
(
z+1
z−1

)
, and we need to check if it is a

continuous branch. The function so defined is surely continuous (and hence
holomorphic by Theorem 0.2) everywhere on C \ [−1, 1] except possibly the
real axis to the left of z = −1. As you approach this part of the real axis
from the top, both θ1, θ2 → π. On the other hand when you approach from
the bottom, both θ1, θ2 → −π, and so their difference cancels out. So the

resulting function defines a continuous, and hence a holomorphic, log
(
z+1
z−1

)
.

Again if we change the domain for either θ1 or θ2 to (0, 2π), we are forced
ton consider other branch cuts. Once again, the reader should work both
these cases out carefully.

nth-roots of holomorphic functions

Given a logarithm function, and a w ∈ C, one can define a holomorphic
complex power, by

(0.3) zw = ew log z.

When w = 1/n is the reciprocal of a natural number, we call z1/n the nth

root of z.

Example 0.1. Roots of unity. Consider the polynomial zn − 1. Clearly
ζn = e2πi/n, is a root. Moreover, ζkn, for k = 0, 1, · · · , n − 1 is also a root,
and since the degree of the polynomial is n, these are all the possible roots.
We call ζn the primitive nth root of unity.

We then have the following analogs of Corollary 0.1 and Theorem 0.2.

Theorem 0.3. (1) If Ω is simply connected and f(z) is holomorphic
and zero free, then there exists a holomorphic function g(z) such
that g(z)n = f(z). Moreover, if g1(z) is any other such function,

then g1(z) = ζkng(z) where ζn = e2πi/n is the primitive nth root of
unity and k = 0, 1, · · · , n− 1.

(2) If g : Ω→ C is continuous such that g(z)n is holomorphic for some
positive integer n, then g(z) itself is holomorphic.

Proof. (1) For the first part, by Corollary 0.1, there exists a holomorphic
log f(z). We then simply take

g(z) = e
log f(z)

n .

It is also clear that if g1(z) is another such function, then (g1(z)/g(z))n =
1, and hence there exists

(2) We proceed as in the proof of Theorem 0.2. Let f(z) = g(z)n.

Then for any p ∈ Ω if r > 0 such that Dr(p) ⊂ Ω, by the first
part, there exists a holomorphic function gp(z) on Dr(p) such that
gp(z)

n = f(z). But then on the disc, (g/gp)
n = 1 and hence by

continuity, there exists a fixed integer 0 ≤ k ≤ n − 1 (independent
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of z) such that g(z) = gp(z)e
2πik/n, which in turn implies that g(z)

is holomorphic.
�

Principal, and other branches of the square root. We can define
the principal branch of the square root so that

√
1 = 1. Doing a similar

computation as above, we can then see that if z = reiθ with θ ∈ (−π, π),
then √

z = reiθ/2.

On the other hand, if we want
√

1 = −1, then
√
z = reiπ+iθ/2.

Branch cuts for
√
z2 − 1. Any of the branch cuts for log (z2 − 1) will

allow us to define
√
z2 − 1 on their complement by equation (0.3). Each

of those branch cuts extend out to infinity. But it turns out we can define
a holomorphic branch of

√
z2 − 1 on the complement of finite cut. This is

possible because ∞ is not a branch point (even though it is a branch point
of log (z2 − 1)).

To see this, we again make use of double polar coordinates. Let z =
−1 + r1e

iθ1 = 1 + r2e
iθ2 as before, where we let θj ∈ (−π, π), and we define

g(z) =
√
r1r2e

i

(
θ1+θ2

2

)
.

Clearly this defines a branch of
√
z2 − 1 since

g(z)2 = r1r2e
i(θ1+θ2) = (z + 1)(z − 1) = z2 − 1.

All we need to now do, is to find a branch cut such that g(z) is continuous
in the complement.

Clearly θ1 is continuous everywhere except (−∞,−1] and θ2 is continuous
everywhere except (−∞, 1]. So g(z) is continuous everywhere except possi-
bly for (−∞, 1]. Let us analyze the two intervals (−∞,−1) and [−1, 1]. If z
approaches [−1, 1] from above, θ1 → 0 but θ2 → π, and so

g(z)→
√
r1r2e

iπ/2 = i
√
r1r2.

But if it approaches from below, then θ1 → 0 while θ2 → −π. So

g(z)→
√
r1r2e

−πi/2 = −i
√
r1r2,

and so g(z) is discontinuous on [−1, 1]. Next we analyse continuity along
(−∞,−1). As z approaches (−∞,−1) from above, θ1 → π and θ2 → π,
hence

g(z)→ e2iπ/2
√
r1r2 = −

√
r1r2.

On the other hand when z approaches (−∞,−1) from below θ1, θ2 → −π,
and so

g(z)→
√
r1r2e

−iπ = −
√
r1r2,
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and hence g(z) defines a continuous branch on (−∞,−1). The upshot is

that g(z) defines a continuous (and hence holomorphic) branch of
√
z2 − 1

on C \ [−1, 1].

Note that with above formula, we can also compute the value of
√
z2 − 1.

For instance we demonstrate how to calculate the value of
√
i2 − 1 for our

particular branch. Of course the answer has to be either ±i
√

2, but the
question is which one of these values? We can write (draw a picture to see
what is happening geometrically)

i = −1 +
√

2eiπ/4 = 1 +
√

2e3πi/4,

so that r1 = r2 =
√

2 and θ1 = π/4 and θ2 = 3π/4. Since θ1 + θ2 = π by
the formula above

g(i) =

√√
2
√

2 eiπ/2 = i
√

2.
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