LECTURE-14

VED V. DATAR*

Isolated Singularities

A punctured domain is an open set with a point removed. For $p \in \Omega$, we use the notation

$$
\Omega_{p}^{*}=\Omega \backslash\{p\},
$$

or simply Ω^{*} for $\Omega \backslash\{0\}$, if $0 \in \Omega$ or when there is no confusion about the point removed. The aim of this lecture is to study functions that are holomorphic on punctured domains. The puncture, that is the point p in the above case, is called an isolated singularity. These come in three types -

- Removable singularities
- Poles
- Essential singularities

Removable singularities

A holomorphic function $f \in \mathcal{O}\left(\Omega_{p}^{*}\right)$ is said to have a removable singularity at p if there exists a holomorphic function $\tilde{f} \in \mathcal{O}(\Omega)$ such that

$$
\left.\tilde{f}\right|_{\Omega_{p}^{*}}=f .
$$

Theorem 0.1. Let $f \in \mathcal{O}\left(\Omega_{p}^{*}\right)$. Then the following are equivalent.
(1) f has a removable singularity at p.
(2) f can be extended to a continuous function on Ω.
(3) f is bounded in a neighborhood of p.
(4) $\lim _{z \rightarrow p}(z-p) f(z)=0$.

Proof. The implications (1) $\Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4)$ are trivial. To complete the proof, we need to show that $(4) \Longrightarrow$ (1).

For convenience, suppose $p=0$. So suppose $f(z)$ satisfies

$$
\lim _{z \rightarrow 0} z f(z)=0,
$$

and define a new function

$$
g(z)=\left\{\begin{array}{l}
z^{2} f(z), z \neq 0 \\
0, z=0
\end{array}\right.
$$

Claim 1. $g(z)$ is holomorphic on Ω and moreover, $g^{\prime}(0)=0$.

[^0]Clearly $g(z)$ is holomorphic on Ω^{*}. So we only need to prove holomorphicity at $z=0$. Let us compute the difference quotient. Since $g(0)=0$, $g^{\prime}(0)$ if it exists is equal to

$$
\lim _{h \rightarrow 0} \frac{g(h)}{h}=\lim _{h \rightarrow 0} h f(h)=0
$$

by hypothesis. This proves the claim. By analyticity, $g(z)$ has power series expansion in a neighborhood of $z=0$. That is, there is a small disc $D_{\varepsilon}(0)$ such that for all $z \in D_{\varepsilon}(0)$,

$$
g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n} .
$$

Now, since $g(0)=g^{\prime}(0)=0$,

$$
g(z)=z^{2} \sum_{n=2}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n-2} .
$$

By comparing to the definition of $g(z)$ we see that for $z \in D_{\varepsilon}(0) \backslash\{0\}$,

$$
f(z)=\sum_{n=2}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n-2} .
$$

and so we define

$$
\tilde{f}(z)=\left\{\begin{array}{l}
\sum_{n=2}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n-2}, z \in D_{\varepsilon}(0) \\
f(z), z \in \Omega^{*} .
\end{array}\right.
$$

This is a well defined function, since on the intersection $\Omega^{*} \cap D_{\varepsilon}(0), f(z)$ is equal to the infinite series. \tilde{f} is clearly holomorphic on Ω^{*} since it equals $f(z)$ in this region. Moreover, since it is a power series in a neighborhood of $z=0$, it is also holomorphic at $z=0$. Hence \tilde{f} satisfies all the properties in (1), and this completes the proof.

Remark 0.1. Recall that in lecture-7 we proved that Goursat's theorem was valid for functions that are holomorphic at all but one point in a domain, so long as they are bounded near that point. In view of the above theorem, such a result is not surprising, since the function does extend to a holomorphic function on the entire domain, to which Goursat's theorem applies.

Example 0.1. Consider the holomorphic function $S i: \mathbb{C}^{*} \rightarrow \mathbb{C}$ defined by

$$
\operatorname{Si}(z)=\frac{\sin z}{z} .
$$

Then clearly

$$
\lim _{z \rightarrow 0} z \cdot \operatorname{Si}(z)=\lim _{z \rightarrow 0} \sin z=0 .
$$

Hence by the theorem, $\mathrm{Si}(z)$ has a removable singularity at $z=0$ and hence can be extended to an entire function. It is instructive to look at the power
series of $\sin z$. Recall that

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\ldots
$$

and so dividing by z, we see that for $z \neq 0$,

$$
\operatorname{Si}(z)=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!} .
$$

The power series on the right clearly defines an entire function (an is in particular also defined at $z=0$), and hence $\operatorname{Si}(z)$ defines an entire function.

Poles

Let $f \in \mathcal{O}\left(\Omega_{p}^{*}\right)$. We say that p is a pole if

$$
\lim _{z \rightarrow p}|f(z)|=\infty .
$$

Theorem 0.2. Let $f \in \mathcal{O}\left(\Omega_{p}^{*}\right)$. Then the following are equivalent.
(1) f has a pole at p.
(2) There exists a small disc $D_{\varepsilon}(p)$ and a holomorphic function h : $D_{\varepsilon}(p) \rightarrow \mathbb{C}$ such that $h(p)=0$ and $h(z) \neq 0$ for any other $z \in D_{\varepsilon}(p)$, and

$$
f(z)=\frac{1}{h(z)}
$$

for all $z \in D_{\varepsilon}(p) \backslash\{p\}$.
(3) There exists a holomorphic function $g: \Omega \rightarrow \mathbb{C}$ such that $g(p) \neq 0$, and an integer $m \geq 1$ such that for all $z \in \Omega_{p}^{*}$,

$$
f(z)=\frac{g(z)}{(z-p)^{m}}
$$

(4) There exists a $M>1$ and integer $m \geq 1$ such that on some disc $D_{\varepsilon}(p)$ around p, we have the estimates

$$
\frac{1}{M|z-p|^{m}} \leq|f(z)| \leq \frac{M}{|z-p|^{m}} .
$$

Note that the integer m in (3) and (4) above has to be the same, and is called the order of the pole at p, and written as $\nu_{f}(p)$.

Proof. Again for convenience, lets assume $p=0$, and we denote $\Omega_{p}^{*}=\Omega^{*}$. Suppose $|f(z)| \rightarrow \infty$ as $z \rightarrow 0$. Then clearly there is a small disc $D_{\varepsilon}(0)$ on which f does not have a zero. Then $h(z)=1 / f(z)$ is holomorphic in the punctured disc $D_{\varepsilon}(0)^{*}$. Moreover,

$$
\lim _{z \rightarrow 0}|h(z)|=\frac{1}{\lim _{z \rightarrow 0}|f(z)|}=0
$$

and hence in particular is bounded near $z=0$. By Theorem $0.1, h(z)$ actually extends to a holomorphic function to the entire disc $D_{\varepsilon}(0)$, which
we continue to call $h(z)$, and from the limit it is clear that $h(p)=0$. So $h(z)$ atisfies all the conditions in (2), and this proves that $(1) \Longrightarrow$ (2).

To show that $(2) \Longrightarrow(3)$, note that by the theorem on zeroes, since h is not identically zero, there exists an integer m such that for all $z \in D_{\varepsilon}(0)$,

$$
h(z)=z^{m} g_{1}(z),
$$

where $g_{1}(p) \neq 0$. Moreover, since $h(p)=0$, we must necessarily have $m \geq 1$. Now consider the function

$$
g(z)=z^{m} f(z)
$$

holomorphic on Ω^{*}. Then on $D_{\varepsilon}(0) \backslash\{0\}, g(z)=1 / g_{1}(z)$. Since $g_{1}(p) \neq 0$ and g_{1} is holomorphic on $D_{\varepsilon}(0)$, we see that $1 / g_{1}(z)$ is bounded on $D_{\varepsilon}(0)$. Hence by the removable singularity theorem, $g(z)$ extends to a holomorphic function on all of Ω, and satisfies all the conditions in (3).

To show that $(3) \Longrightarrow(4)$, note that since g is holomorphic near $z=0$, it will in particular be bounded in a neighborhood. So there exists $M>0$ such that for all $z \in D_{\varepsilon}(0)$,

$$
|g(z)| \leq M
$$

On the other hand, since $g(p) \neq 0$, by continuity, for the $\varepsilon>0$ above, there exists a δ such that

$$
|g(z)| \geq \delta
$$

for all $z \in D_{\varepsilon}(0)$. Take M large enough so that $1 / M<\delta$, then we see that on $D_{\varepsilon}(0)$,

$$
\frac{1}{M} \leq|g(z)| \leq M
$$

and this proves (4).
$(4) \Longrightarrow(1)$ also holds trivially, thus completing the proof of the Theorem.

Example 0.2. The function

$$
\cot z=\frac{\cos z}{\sin z} .
$$

has poles at all the zeroes of $\sin z$ (since $\cos z$ and $\sin z$ do not share any zeroes, there is no "cancellation" of the poles). Let us find the order of the zero at $z=0$. Near $z=0, \sin z \approx z$. More precisely,

$$
z \cot z=\frac{z \cos z}{\sin z}=\frac{\cos z}{\operatorname{Si}(z)}
$$

where $\operatorname{Si}(z)$ is the function from the last section. Then we saw from the power series expansion, that $\operatorname{Si}(0)=1$ and hence $\cos z / \operatorname{Si}(z) \rightarrow 1$ as $z \rightarrow 0$. In particular, for a small $\varepsilon>0,1 / 2<|\cos z / \operatorname{Si}(z)|<2$, and hence

$$
\frac{1}{2 z} \leq \frac{\cos z}{\sin _{4} z} \leq \frac{2}{z}
$$

and so $z=0$ is a pole of order $m=1$. It is once again instructive to look at an expansion near $z=0$. For $z \neq 0$,

$$
\begin{aligned}
\frac{\cos z}{\sin z} & =\frac{1-z^{2} / 2+\cdots}{z-z^{3} / 6+\cdots} \\
& =\frac{1}{z} \cdot \frac{1-z^{2} / 2+\cdots}{1-z^{2} / 6+\cdots} \\
& =\frac{1}{z}\left(1-\frac{z^{2}}{2}+\cdots\right)\left(1+\frac{z^{2}}{6}+\cdots\right) \\
& =\frac{1}{z}-\frac{z}{3}+\cdots
\end{aligned}
$$

From this it is clear that cot z has a pole of order $z=0$.
Remark 0.2. The idea of an expansion for a singular function near it's pole can be generalized. Let p be a pole for $f: \Omega_{p}^{*} \rightarrow \mathbb{C}$. Then from the theorem, we can write

$$
f(z)=\frac{g(z)}{(z-p)^{m}}
$$

for some holomorphic $g: \Omega \rightarrow \mathbb{C}$ with $g(p) \neq 0$. By analyticity, in a neighborhood of p we can write

$$
g(z)=\sum_{n=0}^{\infty} a_{n}(z-p)^{n}
$$

with $a_{0} \neq 0$. Hence for $z \neq p$, we have the expansion
$f(z)=\frac{a_{0}}{(z-p)^{m}}+\frac{a_{1}}{(z-p)^{m-1}}+\cdots+a_{m}+a_{m+1}(z-p)+a_{m+2}(z-p)^{2}+\cdots$.
Such an expansion is called a Laurent series expansion, which we will study in greater detail in the next lecture. The part with the negative powers is called the principal part of f near p. In fact, if we denote by

$$
Q_{p}(w):=a_{0} w^{m}+\cdots+a_{m-1} w
$$

then we can write

$$
f(z)=Q_{p}\left(\frac{1}{z-p}\right)+h_{p}(z)
$$

where h_{p} extends to a holomorphic function across p.

EsSEntial SINGULARITIES

If $f: \Omega_{p}^{*} \rightarrow \mathbb{C}$ is holomorphic, then p is called an essential singularity if it is neither a removable singularity nor a pole. Unlike in the case of removable singularities and poles, the function behaves rather erratically in any neighborhood around an essential singularity.

Theorem 0.3 (Casorati-Weierstrass). The following are equivalent.
(1) f has an essential singularity at p.
(2) For any disc $D_{\varepsilon}(p), f\left(D_{\varepsilon}(p)\right)$ is dense in \mathbb{C}, that is for any disc $D_{\varepsilon}(p)$ and any $a \in \mathbb{C}$, there exists a sequence $\left\{z_{n}\right\} \in D_{\varepsilon}(p)$ such that

$$
\lim _{n \rightarrow \infty} f\left(z_{n}\right)=a .
$$

Proof. We first show that $(2) \Longrightarrow(1)$. If p is a removable singularity, then for some disc $D_{\varepsilon}(p), f\left(D_{\varepsilon}(0)\right)$ is a bounded set in \mathbb{C}, and so cannot be dense. On the other hand if p is a pole, then $|f(z)| \rightarrow \infty$ as $z \rightarrow p$. In particular, there is a disc $D_{\varepsilon}(p)$ such that for all $z \in D_{\varepsilon}(p)$,

$$
|f(z)|>1,
$$

and hence once again $D_{\varepsilon}(p)$ cannot be dense in \mathbb{C}. This forces p to be an essential singularity.

Conversely, suppose p is an essential singularity. We then have to show that (2) holds. If not, then there is a disc $D_{\varepsilon_{0}}(p)$ such that $f\left(D_{\varepsilon_{0}}(p) \backslash\{p\}\right)$ is not dense in \mathbb{C}. Hence there exists an $a \in \mathbb{C}$ and an $r>0$ such that

$$
|f(z)-a|>r
$$

for all $z \in D_{\varepsilon}(p) \backslash\{p\}$. Then define $g: D_{\varepsilon}(p) \backslash\{p\} \rightarrow \mathbb{C}$ by

$$
g(z)=\frac{1}{f(z)-a} .
$$

Since $f(z) \neq a$ on that punctured disc, $g(z)$ is holomorphic. Moreover $|g(z)| \leq 1 / r$ in $D_{\varepsilon}(p) \backslash\{p\}$, and hence by the removable singularity Theorem 0.1 , there exists an extension \tilde{g} holomorphic on $D_{\varepsilon}(p)$. There are now two cases.

Case-1. $\tilde{g}(p) \neq 0$. Then by continuity, there is a smaller $r<\varepsilon$ and a $\delta>0$ such that $|\tilde{g}(z)|>\delta$ on $D_{r}(p)$. But away from p,

$$
f(z)=\frac{1}{g(z)}+a
$$

and so on $D_{r}(p) \backslash\{p\}$,

$$
|f(z)| \leq \frac{1}{|\tilde{g}(z)|}+|a|<\frac{1}{\delta}+|a|,
$$

and so $|f(z)|$ is bounded in a neighborhood of p. By the removable singularity theorem, f must have a removable singularity at $z=p$ which is a contradiction.

Case-2. $\tilde{g}(p)=0$. Then for any $\varepsilon>0$, there exists a $r>0$ such that on D_{r},

$$
|\tilde{g}(z)| \leq \varepsilon .
$$

So by triangle inequality, if ε small enough so that $|a|<1 / 2 \varepsilon$, then on $D_{r}(p) \backslash\{p\}$ we have

$$
|f(z)|=\left|\frac{1}{g(z)}+a\right| \geq \left\lvert\, \frac{1}{\underset{6}{|g(z)|}-|a|\left|\geq \frac{1}{\varepsilon}-|a|>\frac{1}{2 \varepsilon}, ~\left(\frac{1}{6}\right.\right.}\right.
$$

for all $z \in D_{r}(p)$. This shows that $\lim _{z \rightarrow p}|f(z)|=\infty$, which is a contradiction, completing the proof of the theorem.

Remark 0.3. It is a theorem of Picard's that in any neighbourhood of an essential singularity, the image under f is not only dense in \mathbb{C} but misses at most one point of \mathbb{C} !
Example 0.3. The function $f(z)=e^{1 / z}$, which is holomorphic on \mathbb{C}^{*}, has an essential singularity at $z=0$. To see this, we need to rule out the possibilities of f having a removable singularity or a pole at $z=0$. Since

$$
f(1 / n)=e^{n} \xrightarrow{n \rightarrow \infty} \infty,
$$

$f(z)$ is not bounded in any neighborhood of $z=0$, and hence cannot have a removable singularity. On the other hand,

$$
f\left(\frac{1}{2 \pi n i}\right)=e^{2 \pi i n}=1
$$

Hence the limit $\lim _{z \rightarrow 0} f(z)$ cannot be infinity, and hence f cannot have a pole at $z=0$. This shows that $f(z)$ has to have an essential singularity at $z=0$. Again looking at an expansion, we see that for $z \neq 0$,

$$
e^{1 / z}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots
$$

So the expansion has infinitely many terms with negative powers of z. As we will see when we discuss Laurent series, this in fact characterizes essential singularities.
Remark 0.4. We finally remark that non-isolated singularities can exist. For instance the function

$$
f(z)=\tan \left(\frac{1}{z}\right)
$$

has singularities at 0 and points $p_{n}=2 / n \pi$ which converge to 0 . The analysis in the present lecture does not apply to such singularities.

* Department of Mathematics, Indian Institute of Science

Email address: vvdatar@iisc.ac.in

[^0]: Date: 24 August 2016.

