
LECTURE-14

VED V. DATAR∗

Isolated Singularities

A punctured domain is an open set with a point removed. For p ∈ Ω, we
use the notation

Ω∗p = Ω \ {p},
or simply Ω∗ for Ω \ {0}, if 0 ∈ Ω or when there is no confusion about
the point removed. The aim of this lecture is to study functions that are
holomorphic on punctured domains. The puncture, that is the point p in
the above case, is called an isolated singularity. These come in three types -

• Removable singularities
• Poles
• Essential singularities

Removable singularities

A holomorphic function f ∈ O(Ω∗p) is said to have a removable singularity

at p if there exists a holomorphic function f̃ ∈ O(Ω) such that

f̃
∣∣∣
Ω∗

p

= f.

Theorem 0.1. Let f ∈ O(Ω∗p). Then the following are equivalent.

(1) f has a removable singularity at p.
(2) fcan be extended to a continuous function on Ω.
(3) f is bounded in a neighborhood of p.
(4) limz→p(z − p)f(z) = 0.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) are trivial. To
complete the proof, we need to show that (4) =⇒ (1).

For convenience, suppose p = 0. So suppose f(z) satisfies

lim
z→0

zf(z) = 0,

and define a new function

g(z) =

{
z2f(z), z 6= 0

0, z = 0

Claim 1. g(z) is holomorphic on Ω and moreover, g′(0) = 0.
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Clearly g(z) is holomorphic on Ω∗. So we only need to prove holomor-
phicity at z = 0. Let us compute the difference quotient. Since g(0) = 0,
g′(0) if it exists is equal to

lim
h→0

g(h)

h
= lim

h→0
hf(h) = 0

by hypothesis. This proves the claim. By analyticity, g(z) has power series
expansion in a neighborhood of z = 0. That is, there is a small disc Dε(0)
such that for all z ∈ Dε(0),

g(z) =

∞∑
n=0

g(n)(0)

n!
zn.

Now, since g(0) = g′(0) = 0,

g(z) = z2
∞∑
n=2

g(n)(0)

n!
zn−2.

By comparing to the definition of g(z) we see that for z ∈ Dε(0) \ {0},

f(z) =
∞∑
n=2

g(n)(0)

n!
zn−2.

and so we define

f̃(z) =

{∑∞
n=2

g(n)(0)
n! zn−2, z ∈ Dε(0)

f(z), z ∈ Ω∗.

This is a well defined function, since on the intersection Ω∗ ∩Dε(0), f(z) is

equal to the infinite series. f̃ is clearly holomorphic on Ω∗ since it equals
f(z) in this region. Moreover, since it is a power series in a neighborhood

of z = 0, it is also holomorphic at z = 0. Hence f̃ satisfies all the properties
in (1), and this completes the proof. �

Remark 0.1. Recall that in lecture-7 we proved that Goursat’s theorem was
valid for functions that are holomorphic at all but one point in a domain, so
long as they are bounded near that point. In view of the above theorem, such
a result is not surprising, since the function does extend to a holomorphic
function on the entire domain, to which Goursat’s theorem applies.

Example 0.1. Consider the holomorphic function Si : C∗ → C defined by

Si(z) =
sin z

z
.

Then clearly

lim
z→0

z · Si(z) = lim
z→0

sin z = 0.

Hence by the theorem, Si(z) has a removable singularity at z = 0 and hence
can be extended to an entire function. It is instructive to look at the power
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series of sin z. Recall that

sin z = z − z3

3!
+
z5

5!
+ ...,

and so dividing by z, we see that for z 6= 0,

Si(z) = 1− z2

3!
+
z4

5!
=

∞∑
n=0

(−1)n
z2n

(2n+ 1)!
.

The power series on the right clearly defines an entire function (an is in
particular also defined at z = 0), and hence Si(z) defines an entire function.

Poles

Let f ∈ O(Ω∗p). We say that p is a pole if

lim
z→p
|f(z)| =∞.

Theorem 0.2. Let f ∈ O(Ω∗p). Then the following are equivalent.

(1) f has a pole at p.
(2) There exists a small disc Dε(p) and a holomorphic function h :

Dε(p)→ C such that h(p) = 0 and h(z) 6= 0 for any other z ∈ Dε(p),
and

f(z) =
1

h(z)

for all z ∈ Dε(p) \ {p}.
(3) There exists a holomorphic function g : Ω → C such that g(p) 6= 0,

and an integer m ≥ 1 such that for all z ∈ Ω∗p,

f(z) =
g(z)

(z − p)m
.

(4) There exists a M > 1 and integer m ≥ 1 such that on some disc
Dε(p) around p, we have the estimates

1

M |z − p|m
≤ |f(z)| ≤ M

|z − p|m
.

Note that the integer m in (3) and (4) above has to be the same, and is
called the order of the pole at p, and written as νf (p).

Proof. Again for convenience, lets assume p = 0, and we denote Ω∗p = Ω∗.
Suppose |f(z)| → ∞ as z → 0. Then clearly there is a small disc Dε(0) on
which f does not have a zero. Then h(z) = 1/f(z) is holomorphic in the
punctured disc Dε(0)∗. Moreover,

lim
z→0
|h(z)| = 1

limz→0 |f(z)|
= 0,

and hence in particular is bounded near z = 0. By Theorem 0.1, h(z)
actually extends to a holomorphic function to the entire disc Dε(0), which
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we continue to call h(z), and from the limit it is clear that h(p) = 0. So
h(z) atisfies all the conditions in (2), and this proves that (1) =⇒ (2).

To show that (2) =⇒ (3), note that by the theorem on zeroes, since h is
not identically zero, there exists an integer m such that for all z ∈ Dε(0),

h(z) = zmg1(z),

where g1(p) 6= 0. Moreover, since h(p) = 0, we must necessarily have m ≥ 1.
Now consider the function

g(z) = zmf(z)

holomorphic on Ω∗. Then on Dε(0) \ {0}, g(z) = 1/g1(z). Since g1(p) 6= 0
and g1 is holomorphic on Dε(0), we see that 1/g1(z) is bounded on Dε(0).
Hence by the removable singularity theorem, g(z) extends to a holomorphic
function on all of Ω, and satisfies all the conditions in (3).

To show that (3) =⇒ (4), note that since g is holomorphic near z = 0,
it will in particular be bounded in a neighborhood. So there exists M > 0
such that for all z ∈ Dε(0),

|g(z)| ≤M.

On the other hand, since g(p) 6= 0, by continuity, for the ε > 0 above, there
exists a δ such that

|g(z)| ≥ δ
for all z ∈ Dε(0). Take M large enough so that 1/M < δ, then we see that
on Dε(0),

1

M
≤ |g(z)| ≤M,

and this proves (4).
(4) =⇒ (1) also holds trivially, thus completing the proof of the Theo-

rem. �

Example 0.2. The function

cot z =
cos z

sin z
.

has poles at all the zeroes of sin z (since cos z and sin z do not share any
zeroes, there is no “cancellation” of the poles). Let us find the order of the
zero at z = 0. Near z = 0, sin z ≈ z. More precisely,

z cot z =
z cos z

sin z
=

cos z

Si(z)
,

where Si(z) is the function from the last section. Then we saw from the
power series expansion, that Si(0) = 1 and hence cos z/Si(z)→ 1 as z → 0.
In particular, for a small ε > 0, 1/2 < | cos z/Si(z)| < 2, and hence

1

2z
≤ cos z

sin z
≤ 2

z
,
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and so z = 0 is a pole of order m = 1. It is once again instructive to look
at an expansion near z = 0. For z 6= 0,

cos z

sin z
=

1− z2/2 + · · ·
z − z3/6 + · · ·

=
1

z
· 1− z2/2 + · · ·

1− z2/6 + · · ·

=
1

z

(
1− z2

2
+ · · ·

)(
1 +

z2

6
+ · · ·

)
=

1

z
− z

3
+ · · ·

From this it is clear that cot z has a pole of order z = 0.

Remark 0.2. The idea of an expansion for a singular function near it’s
pole can be generalized. Let p be a pole for f : Ω∗p → C. Then from the
theorem, we can write

f(z) =
g(z)

(z − p)m
,

for some holomorphic g : Ω → C with g(p) 6= 0. By analyticity, in a
neighborhood of p we can write

g(z) =

∞∑
n=0

an(z − p)n,

with a0 6= 0. Hence for z 6= p, we have the expansion

f(z) =
a0

(z − p)m
+

a1

(z − p)m−1
+ · · ·+am+am+1(z−p)+am+2(z−p)2 + · · · .

Such an expansion is called a Laurent series expansion, which we will study
in greater detail in the next lecture. The part with the negative powers is
called the principal part of f near p. In fact, if we denote by

Qp(w) := a0w
m + · · ·+ am−1w,

then we can write

f(z) = Qp

( 1

z − p

)
+ hp(z),

where hp extends to a holomorphic function across p.

Essential singularities

If f : Ω∗p → C is holomorphic, then p is called an essential singularity
if it is neither a removable singularity nor a pole. Unlike in the case of
removable singularities and poles, the function behaves rather erratically in
any neighborhood around an essential singularity.

Theorem 0.3 (Casorati-Weierstrass). The following are equivalent.

(1) f has an essential singularity at p.
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(2) For any disc Dε(p), f(Dε(p)) is dense in C, that is for any disc
Dε(p) and any a ∈ C, there exists a sequence {zn} ∈ Dε(p) such
that

lim
n→∞

f(zn) = a.

Proof. We first show that (2) =⇒ (1). If p is a removable singularity, then
for some disc Dε(p), f(Dε(0)) is a bounded set in C, and so cannot be dense.
On the other hand if p is a pole, then |f(z)| → ∞ as z → p. In particular,
there is a disc Dε(p) such that for all z ∈ Dε(p),

|f(z)| > 1,

and hence once again Dε(p) cannot be dense in C. This forces p to be an
essential singularity.

Conversely, suppose p is an essential singularity. We then have to show
that (2) holds. If not, then there is a disc Dε0(p) such that f(Dε0(p) \ {p})
is not dense in C. Hence there exists an a ∈ C and an r > 0 such that

|f(z)− a| > r

for all z ∈ Dε(p) \ {p}. Then define g : Dε(p) \ {p} → C by

g(z) =
1

f(z)− a
.

Since f(z) 6= a on that punctured disc, g(z) is holomorphic. Moreover
|g(z)| ≤ 1/r in Dε(p)\{p}, and hence by the removable singularity Theorem
0.1, there exists an extension g̃ holomorphic on Dε(p). There are now two
cases.

Case-1. g̃(p) 6= 0. Then by continuity, there is a smaller r < ε and a δ > 0
such that |g̃(z)| > δ on Dr(p). But away from p,

f(z) =
1

g(z)
+ a,

and so on Dr(p) \ {p},

|f(z)| ≤ 1

|g̃(z)|
+ |a| < 1

δ
+ |a|,

and so |f(z)| is bounded in a neighborhood of p. By the removable singu-
larity theorem, f must have a removable singularity at z = p which is a
contradiction.

Case-2. g̃(p) = 0. Then for any ε > 0, there exists a r > 0 such that on
Dr,

|g̃(z)| ≤ ε.
So by triangle inequality, if ε small enough so that |a| < 1/2ε, then on
Dr(p) \ {p} we have

|f(z)| =
∣∣∣ 1

g(z)
+ a
∣∣∣ ≥ ∣∣∣ 1

|g(z)|
− |a|

∣∣∣ ≥ 1

ε
− |a| > 1

2ε
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for all z ∈ Dr(p). This shows that limz→p |f(z)| =∞, which is a contradic-
tion, completing the proof of the theorem. �

Remark 0.3. It is a theorem of Picard’s that in any neighbourhood of an
essential singularity, the image under f is not only dense in C but misses
at most one point of C!

Example 0.3. The function f(z) = e1/z, which is holomorphic on C∗, has
an essential singularity at z = 0. To see this, we need to rule out the
possibilities of f having a removable singularity or a pole at z = 0. Since

f(1/n) = en
n→∞−−−→∞,

f(z) is not bounded in any neighborhood of z = 0, and hence cannot have a
removable singularity. On the other hand,

f
( 1

2πni

)
= e2πin = 1.

Hence the limit limz→0 f(z) cannot be infinity, and hence f cannot have a
pole at z = 0. This shows that f(z) has to have an essential singularity at
z = 0. Again looking at an expansion, we see that for z 6= 0,

e1/z = 1 +
1

z
+

1

2!z2
+ · · · .

So the expansion has infinitely many terms with negative powers of z. As we
will see when we discuss Laurent series, this in fact characterizes essential
singularities.

Remark 0.4. We finally remark that non-isolated singularities can exist.
For instance the function

f(z) = tan
(1

z

)
has singularities at 0 and points pn = 2/nπ which converge to 0. The anal-
ysis in the present lecture does not apply to such singularities.
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