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A Laurent series centered at z = a is an infinite series of the form
∞∑
n=1

bn
(z − a)n

+
∞∑
n=0

cn(z − a)n(0.1)

We can combine this into one infinite sum
∞∑

n=−∞
an(z − a)n = · · ·+ a−1

z − a
+ a0 + a1(z − a) + a2(z − a)2 + · · · ,

by setting

(0.2) an =

{
b−n, n ≤ −1

cn, n ≥ 0.

We say that the Laurent series in (0.1) is convergent at z if both the
infinite series are convergent. The first term above is an infinite series of the
form

b1(z − a)−1 + · · · .(0.3)

Changing the variable to w = (z − a)−1, we can re-write this as a usual
power series -

b1w + b2w
2 + · · · .

Then by the fundamental theorem for power series, there exists an R1 such
that the series converges on the disc |w| < R−11 (or equivalently the annulus
|z| > R1), where

R1 = lim sup
n→∞

|bn|1/n

Or equivalently, the series (0.3) converges for |z − a| > R1. On the other
hand the second series in (0.1) is a regular power series, and hence setting

R2 = (lim sup
n→∞

|cn|1/n)−1,

the second series is convergent for |z − a| < R2. Combining this, we have
the following theorem.

Theorem 1. If R1, R2 given by the formulae above satisfy R1 < R2, then
the Laurent series 0.1 converges for all z ∈ C such that R1 < |z − a| < R2.
Moreover, the convergence is uniform and absolute in the region r1 ≤ |z −
a| ≤ r2 for any r1, r2 satisfying R1 < r1 < r2 < R2. As a consequence, the
limiting function is holomorphic in the annulus R1 < |z − a| < R2.
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Henceforth if R1 < R2 we will denote the annulus of inner radius R1 and
outer radius R2 by

AR1,R2(a) = {z ∈ C | R1 < |z − a| < R2}.
Our main result in this chapter is a converse.

Theorem 2. Let R1 < R2, and f be holomorphic on a domain containing
the closure of the annulus AR1,R2(a). Then for all z ∈ AR1,R2(a),

f(z) =
∞∑

n=−∞
an(z − a)n,

where

an =
1

2πi

∫
Cr

f(ζ)

(ζ − a)n+1
dζ,

for any r ∈ [R1, R2]. Moreover, the series converges uniformly and abso-
lutely on any compact subset of AR1,R2(a).

First we need the following elementary observations.

Lemma 1. Let F be holomorphic on any domain containing the closure of
the annulus AR1,R2(a). Then ∫

Cr(a)
F (z) dz

is independent of r ∈ [R1, R2].

Proof. Let R1 < r1 < r2 < R2. For simplicity let us denote Cri(a) = Ci. We
claim that C1 ∼AR1,R2

(a) C2. The lemma then follows from the generalized

Cauchy theorem. To prove the claim, we need to compute indices. Let
w /∈ AR1,R2(a). Then either |w| > R2 or |w| < R1. If it is the former,
then w /∈ Int(C1) and w /∈ Int(C2). Hence n(C2, w) = n(C1, w) = 0. On
the other hand, if it is the latter, then w ∈ Int(C1) ⊂ Int(C2), and so
n(C1, w) = n(C2, w) = 1. In either case, for all w /∈ AR1,R2(a), n(C1, w) =
n(C2, w), and hence by definition C1 ∼AR1,R2

(a) C2. �

Lemma 2 (CIF for annuli). Let f be holomorphic on a domain containing
the closure of the annulus AR1,R2(a). Then for all z ∈ C such that R1 <
|z − a| < R2 we have

f(z) =
1

2πi

∫
CR2

f(ζ)

ζ − z
dζ − 1

2πi

∫
CR1

f(ζ)

ζ − z
dζ.

Proof. For convenience, we use the notation A = AR1,R2(a). Fix z ∈ A, and
consider the function

g(ζ) =

{
f(ζ)−f(z)

ζ−z , ζ 6= z

f ′(z), ζ = z.

Clearly g(ζ) is holomorphic on the punctured annulus A \ {z}. But it is
continuous on the whole of the annulus since f is holomorphic at z. Hence

2



by the theorem on removable singularities, g(ζ) is holomorphic on all of A.
Then by the above lemma∫

CR2

g(ζ) dζ =

∫
CR1

g(ζ) dζ.

Since z /∈ CR2 or CR1 , the above is equivalent to∫
CR2

f(ζ)

ζ − z
dζ −

∫
CR1

f(ζ)

ζ − z
dζ =

∫
CR2

f(z)

ζ − z
dζ −

∫
CR1

f(z)

ζ − z
dζ

= f(z)

∫
CR2

dζ

ζ − z
− f(z)

∫
CR1

dζ

ζ − z
= 2πif(z)(n(CR2 , z) + n(CR1 , z))

Since z ∈ Int(CR2) but lies in Ext(CR1), n(CR2 , z) = 1 and n(CR1 , z) = 0,
and this completes the proof of the Lemma. �

Proof of theorem 2. This is similar to the proof of analyticity, and the
key tool as before is the geometric series expansion

1

1− w
=

∞∑
n=0

wn,

which is valid in the region |w| < 1. By the Lemma above

f(z) =
1

2πi

∫
CR2

f(ζ)

ζ − z
dζ − 1

2πi

∫
CR1

f(ζ)

ζ − z
dζ := I2 − I1.

To evaluate I2, we write

1

ζ − z
=

1

ζ − a− (z − a)
=

1

ζ − a

( 1

1− (z − a)/(ζ − a)

)
Since ‘a’ is the center of the annulus, if ζ ∈ CR2 , and z ∈ Int(CR2), then

|z − a|
|ζ − a|

=
|z − a|
R2

< 1.

Applying the geometric series expansion with w = (z − a)/(ζ − a) we see
that

I2 =
1

2πi

∫
CR2

f(ζ)

ζ − a

∞∑
n=0

(z − a)n

(ζ − a)n
dζ

=
∞∑
n=0

( 1

2πi

∫
CR2

f(ζ)

(ζ − a)n+1
dζ
)
· (z − a)n

=

∞∑
n=0

an(z − a)n,

where

an =
1

2πi

∫
CR2

f(ζ)

(ζ − a)n+1
dζ.
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To analyze I1, we write

1

ζ − z
= − 1

z − a

( 1

1− (ζ − a)/(z − a)

)
.

But now, if ζ ∈ CR1 , then for z ∈ AR1,R2(a) we have that

|ζ − a|
|z − a|

=
R1

|z − a|
< 1,

and so again from the geometric series expansion it follows that

I1 = − 1

2πi

∫
CR1

f(ζ)

z − a

∞∑
k=0

(ζ − a)k

(z − a)k
dζ

= −
∞∑
k=0

( 1

2πi

∫
CR1

f(ζ)(ζ − a)k dζ
)

(z − a)−k−1.

Putting k + 1 = −n, we can write

I1 = −
−∞∑
n=−1

an(z − a)n,

where

an =
1

2πi

∫
CR1

f(ζ)

(ζ − a)n+1
dζ.

This completes the proof of the theorem.

Application to study of isolated singularities

Corollary 1. Let f : Ω∗p → C holomorphic. The for any disc DR(p) such

that DR(p) ⊂ Ω,

f(z) =
∞∑

n=−∞
an(z − p)n,

where

an =
1

2πi

∫
∂DR(p)

f(ζ)

(ζ − p)n+1
dζ.

Proof. Apply the theorem to the annulus Ar,R(p) and let r → 0. �

We then have the following characterization of isolated singularities based
on the Laurent series expansion.

Theorem 3. Let f : Ω∗p holomorphic with Laurent series expansion

f(z) =

∞∑
n=−∞

an(z − p)n

around p. Then

(1) p is a removable singularity if and only if an = 0 for all n < 0.
(2) p is a pole of order m if and only if an = 0 for all n < −m.
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(3) p is an essential singularity if and only if for any N > 0, there exists
an n < −N such that an 6= 0. That is, there are infinitely many non-
zero negative exponent terms in the Laurent series expansion.

Proof. Note that if DR(p) ⊂ Ω, then the coefficients are given by the formula

an =
1

2πi

∫
∂DR(p)

f(ζ)

(ζ − p)n+1
dζ.

So if p is a removable singularity, then for integers n < 0, (ζ− p)−n−1f(ζ) is
holomorphic on the entire disc DR(p), and hence by Cauchy’s theorem for
discs, an = 0 for all n < 0. Conversely, if an = 0 for n < 0, the Laurent series
reduces to a power series, and we know that power series are holomorphic
on the entire disc of convergence.

To prove the characterization of poles, apply the same argument to the
function (ζ − p)mf(ζ). The characterization of essential singularities then
follows from the definition and the first two parts. �

Remark 1. Note that in the event the function has only poles, the Laurent
series of the function centered at some other points might have infinitely
many negative exponent terms. The theorem only states that the Laurent
series centered at the isolated singularity can have only finitely many negative
exponent terms. For an illustration of this, see Example 2 below.

Example 1. Consider the function

1

z2 − 3z + 2
=

1

z − 2
− 1

z − 1
.

It has two singularities at z = 1 and z = 2 which are clearly poles. We can
expand the function as a Laurent series centered at either of the poles. To
illustrate this, let us find the Laurent series expansion centered at z = 1.
One approach is to use the formula for the coefficients in Theorem 2 and
compute out all the integrals. An easier approach is to use the geometric
series expansion, namely that

1

1− w
=

∞∑
n=0

wn

whenever |w| < 1. Note that the function is holomorphic on the annulus
0 < |z − 1| < 1, and so we can hope to have a Laurent series expansion on
that domain. Writing

1

z − 2
=

1

z − 1− 1
= − 1

1− (z − 1)
.

Since |z − 1| < 1, using the geometric series expansion (with w = z − 1) we
see that

1

z − 2
= −

∞∑
n=0

(z − 1)n,
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and so
1

z2 − 3z + 2
= − 1

z − 1
−
∞∑
n=0

(z − 1)n.

Example 2. Sticking with the function from the previous example, one can
also try to find a Laurent series expansion on other annuli. For instance
the function is holomorphic on the annulus A1,2(0) = 1 < |z| < 2. We
consider each of the terms in the partial fraction decomposition separately.
For z ∈ A1,2(0), |z| > 1 and so applying the geometric series expansion
above to w = 1/z, we see that

1

z − 1
=

1

z

( 1

1− 1/z

)
=

1

z

∞∑
n=0

1

zn
=
∞∑
n=1

1

zn
.

On the other hand, for z ∈ A1,2(0), |z| < 2 and hence once again applying
the geometric series expansion to w = z/2,

1

z − 2
= −1

2

( 1

1− z/2

)
= −1

2

∞∑
n=0

zn

2n
= −

∞∑
n=0

zn

2n+1
.

Putting it all together, we see that on 1 < |z| < 2,

1

z2 − 3z + 2
= −

∞∑
n=1

1

zn
−
∞∑
n=0

zn

2n+1
.

So even though the function only has poles, it Laurent series centred around
z = 0 has infinitely many negative exponent terms.
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