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A Laurent series centered at z = a is an infinite series of the form

o b oo
n n
(01) Zm+20n(z—a)
n=1 n=0
We can combine this into one infinite sum
(o0}
a_
Z an(z —a)" = g —L +ag+ai(z —a) +az(z —a)* +-- -,
S zZ—a
by setting
b_ < -1
(02) an — { mny n =
Cn, N> 0.

We say that the Laurent series in (0.1) is convergent at z if both the
infinite series are convergent. The first term above is an infinite series of the
form

(0.3) bi(z—a)t4---.

Changing the variable to w = (2 — a)™!, we can re-write this as a usual
power series -

biw + bow? 4 - .

Then by the fundamental theorem for power series, there exists an R; such
that the series converges on the disc |w| < Ry (or equivalently the annulus
|z| > R1), where

Ry = limsup |b,|/"

n—oo
Or equivalently, the series (0.3) converges for |z —a| > R;. On the other
hand the second series in (0.1) is a regular power series, and hence setting
Ry = (limsup [en|'/™) 71,
n—oo

the second series is convergent for |z — a| < Rg. Combining this, we have
the following theorem.

Theorem 1. If Ry, Ry given by the formulae above satisfy R1 < Ra, then
the Laurent series 0.1 converges for all z € C such that Ry < |z — a|] < Ra.
Moreover, the convergence is uniform and absolute in the region r1 < |z —
a| < ry for any ri,re satisfying Ry < r1 < re < Ro. As a consequence, the
limiting function is holomorphic in the annulus Ry < |z — a| < Ra.
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Henceforth if Ry < Ry we will denote the annulus of inner radius R; and
outer radius Ry by
ARl,Rz(a) = {Z eC ‘ R < |Z — a\ < RQ}.
Our main result in this chapter is a converse.

Theorem 2. Let R; < Ry, and f be holomorphic on a domain containing
the closure of the annulus AR, r,(a). Then for all z € Ag, r,(a),

o)

[ =3 au(z—a),

n=—0oo

1
o= [ 1O 4
2mi Jo, (¢ —a)nt!
for any r € [Ri1, Ra]. Moreover, the series converges uniformly and abso-
lutely on any compact subset of Ar, r,(a).

where

First we need the following elementary observations.

Lemma 1. Let F' be holomorphic on any domain containing the closure of
the annulus AR, r,(a). Then
/ F(z)dz
Cr(a)

Proof. Let Ry < 11 < ra < Ry. For simplicity let us denote C;,(a) = C;. We
claim that Cy ~ AR, 5y (a) C5. The lemma then follows from the generalized
Cauchy theorem. To prove the claim, we need to compute indices. Let
w ¢ AR, Rr,(a). Then either |w| > Ry or |w| < R;. If it is the former,
then w ¢ Int(C1) and w ¢ Int(C3). Hence n(Cs,w) = n(Cy,w) = 0. On
the other hand, if it is the latter, then w € Int(Cy) C Int(Cs), and so
n(Ci,w) = n(Cz,w) = 1. In either case, for all w ¢ Apr, g,(a), n(Cy,w) =
n(Cq,w), and hence by definition C; ~Ap, py(a) Cs. O

is independent of r € [Ry, Ra].

Lemma 2 (CIF for annuli). Let f be holomorphic on a domain containing
the closure of the annulus AR, r,(a). Then for all z € C such that Ry <
|z — a| < Ry we have

f(z) =

T omi CR2C—,2 2w CR1C—Z

L {(S D S (5

ac.
Proof. For convenience, we use the notation A = Ag, gr,(a). Fix z € A, and

consider the function
F(O)-f(2) 5
9(¢) = { S

f/(z)v ¢ ==z
Clearly g(¢) is holomorphic on the punctured annulus A \ {z}. But it is

continuous on the whole of the annulus since f is holomorphic at z. Hence
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by the theorem on removable singularities, g(¢) is holomorphic on all of A.
Then by the above lemma

/ gQdc= [ g0 dc.
Cr, Cr,

Since z ¢ Cg, or Cg,, the above is equivalent to

FO [ RO [ e [ )
/CRQC—ZdC Cng_ZdC* CRQC—ZdC chC—ZdC
_ e d¢
I f<z>/% =

= 27Tif(z)(n(CR2a Z) + n(CRUZ))

Since z € Int(Cg,) but lies in Fzt(Cg,), n(Cgr,,z) = 1 and n(Cg,,z) = 0,
and this completes the proof of the Lemma. ([l

Proof of theorem 2. This is similar to the proof of analyticity, and the
key tool as before is the geometric series expansion

1 o0
o= 2w
n=0

which is valid in the region |w| < 1. By the Lemma above

70 iy [ (O DR N R ORI S

_2771"6 CRQC_Z _2777‘2 Cng—Z

To evaluate Is, we write

r 1 1 ( 1 )
(—z (—a—(2—a) (—a\l—(z—a)/(C—a)
Since ‘a’ is the center of the annulus, if ( € Cg,, and z € Int(Cg,), then

|z —al |z—a

= < 1.
[¢—al Ry
Applying the geometric series expansion with w = (z — a)/({ — a) we see
that
1 [ 5~ (z=a)"
— d
27 Jo, (—aé((—a)” ¢
(] £(©) n
= (5 /c o ap ) (== a)
= Z an(z —a)",
n=0
where



To analyze I, we write
1 1 1
¢—=z :_z—a(l—(g—a)/(z—a))'
But now, if ( € Cg,, then for z € AR, g,(a) we have that
C—al R _ 1,
|z —al |z—dq]

and so again from the geometric series expansion it follows that

Il:_i z(—oazgagkdg

21 CR1 =0
o 1 L
=3 (5 [ OG- dc)z -y
k=0 CRI
Putting £ + 1 = —n, we can write
L =— Z an(z —a)",
n=—1

where

1 f(Q)
= — — (.
7 o /3R1 C— a1
This completes the proof of the theorem.

APPLICATION TO STUDY OF ISOLATED SINGULARITIES

Corollary 1. Let f: Qp — C holomorphic. The for any disc Dg(p) such
that Dr(p) C Q,

o0
f(Z) = Z an(z _p)n,
where ) 0
p = — SEAL VIS
270 Jopgu(p) (¢ —p)" !
Proof. Apply the theorem to the annulus A, r(p) and let r — 0. O

We then have the following characterization of isolated singularities based
on the Laurent series expansion.

Theorem 3. Let f : 2 holomorphic with Laurent series expansion
oo
f2)=> an(z=p)"
n=-—00
around p. Then
(1) p is a removable singularity if and only if a, = 0 for all n < 0.
(2) p is a pole of order m if and only if a, =0 for alln < —m.
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(3) p is an essential singularity if and only if for any N > 0, there exists
ann < —N such that a, # 0. That is, there are infinitely many non-
zero negative exponent terms in the Laurent series expansion.

Proof. Note that if Dr(p) C Q, then the coefficients are given by the formula
1 f(Q)

Qp = = o ———
270 Jopgp) (€ —p)"Ht

dg.
So if p is a removable singularity, then for integers n < 0, (¢ —p) "L f(() is
holomorphic on the entire disc Dg(p), and hence by Cauchy’s theorem for
discs, a, = 0 for all n < 0. Conversely, if a, = 0 for n < 0, the Laurent series
reduces to a power series, and we know that power series are holomorphic
on the entire disc of convergence.

To prove the characterization of poles, apply the same argument to the
function (¢ — p)™f(¢). The characterization of essential singularities then
follows from the definition and the first two parts. O

Remark 1. Note that in the event the function has only poles, the Laurent
series of the function centered at some other points might have infinitely
many negative exponent terms. The theorem only states that the Laurent
series centered at the isolated singularity can have only finitely many negative
exponent terms. For an illustration of this, see Example 2 below.

Example 1. Consider the function
1 1 1
22-3242 2-2 2z-1

It has two singularities at z =1 and z = 2 which are clearly poles. We can
expand the function as a Laurent series centered at either of the poles. To
illustrate this, let us find the Laurent series exrpansion centered at z = 1.
One approach is to use the formula for the coefficients in Theorem 2 and
compute out all the integrals. An easier approach is to use the geometric
series erpansion, namely that

1 o0
1—w :an
n=0

whenever |w| < 1. Note that the function is holomorphic on the annulus
0 < |z—1] <1, and so we can hope to have a Laurent series expansion on
that domain. Writing
I 1 B 1
z2—2 z2—-1-1  1—(z2-1)

Since |z — 1] < 1, using the geometric series expansion (with w =z —1) we

see that
1 o0

2 —9 :T;)(Zl)n’
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and so

1 1 S n
22—32—{—2_7,2—172(271)

Example 2. Sticking with the function from the previous example, one can
also try to find a Laurent series expansion on other annuli. For instance
the function is holomorphic on the annulus A;2(0) =1 < |z2| < 2. We
consider each of the terms in the partial fraction decomposition separately.
For z € A12(0), |2| > 1 and so applying the geometric series expansion
above to w = 1/z, we see that

11 Tex 1 =1
2—1 <1—1/z) 227227

On the other hand, for z € A12(0), |2| < 2 and hence once again applying
the geometric series expansion to w = 2/2

1 1 1 1
2—2__5(1—2/2> 2 7__22%1
Putting it all together, we see that on 1 < |z| < 2,

P i Zzn Zzn+1

So even though the function only has poles, it Laurent series centred around
z = 0 has infinitely many negative exponent terms.

% DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE
Email address: vvdatar@iisc.ac.in



