
LECTURE-17

VED V. DATAR∗

Proof of the Mittag-Leffler theorem.

Recall that the Mittag-Leffler theorem was as follows.

Theorem 0.1 (Mittag-Leffler). Let {pk} be a discrete set of points in Ω, and
for each k, let Qk(z) be a polynomial without a constant term. There there
exists a f ∈ M(Ω) with poles at pk and holomorphic everywhere else, with
principle part at pk given by Qk(1/(z−pk)). Moreover, all such meromorphic
functions are of the form

f(z) =
∑
k

(
Qk

( 1

z − pk

)
− qk(z)

)
+H(z),

where each qk(z) and H(z) are holomorphic functions on Ω, and qk depends
only on Qk. Furthermore:

(1) If {pk} is a finite sequence, then one could take qk ≡ 0.
(2) If Ω = C, and |pk| → ∞, then one could each qk to be a polynomial.

Proof. The proof of the theorem in case (1) is trivial, and we leave it as an
exercise. We prove the theorem only in the case (2) above. For a general
Ω with possibly infinite sequence {pk}, the proof relies on Runge’s theorem
and is out of the scope of the present course.

So from now, suppose Ω = C. Without loss of generality, we can assume
that no pk is equal to 0. Suppose we order them such that 0 < |p1| ≤ · · · .
By the first part, we can assume that the number of poles is infinite, and
hence that limk→∞ |pk| = ∞. Since each Qk(1/(z − pk)) is holomorphic on
|z| < |pk|, it can be expanded as a Taylor series around z = 0. Let qk be the
partial sum of degree dk of this Taylor expansion. Let

Mk = sup
|z|≤|pk|/2

∣∣∣Qk

( 1

z − pk

)∣∣∣.
Claim. For all z such that |z| ≤ |pk|/4, we have the estimate∣∣∣Qk

( 1

z − pk

)
− qk(z)

∣∣∣ ≤ 2Mk

(2|z|
|pk|

)dk+1
≤Mk2−dk .
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We assume the claim for the moment. Now pick dk >> 1 such that 2dk ≥
Mk2k, and consider the series

f(z) =
∑
k

(
Qk

( 1

z − pk

)
− qk(z)

)
.

For any compact set K ⊂⊂ C \ {p1, · · · , }, there exists a N such that for
k > N , K ⊂ D|pk|/4(0). By the claim and our choice of dk, for all k > N ,
each term of the infinite series

∞∑
k=N+1

(
Qk

( 1

z − pk

)
− qk(z)

)
is dominated by 2−k, and hence by Weierstarss test the tail, represents a
holomorphic function. On the other hand

N∑
k=1

(
Qk

( 1

z − pk

)
− qk(z)

)
is a meromorphic function on K with poles at p1, · · · , pN with prescribed
principal parts. In particular, f(z) is meromorphic on C with poles at pk
with principal part Qk((z − pk)−1). To finish the proof, if f̃ is another such

function, then clearly f̃ − f extends to an entire function.
Proof of the claim. Suppose

Qk

( 1

z − pk

)
− qk(z) =

∞∑
j=dk+1

ajz
j

in the disc |z| < |pk|/2. By the Cauchy estimate, we have that |aj | ≤ 2jMk

|pk|j
,

and so ∣∣∣Qk

( 1

z − pk

)
− qk(z)

∣∣∣ ≤Mk

∞∑
j=dk+1

2j |z|j

|pk|j

≤Mk

(2|z|
|pk|

)dk+1
∞∑
j=0

1

2j

≤ 2Mk

(2|z|
|pk|

)dk+1
,

where we used the fact that |z| ≤ |pk|/4 in the penultimate line. �

Example 0.1. In the previous lecture, we illustrated the theorem by obtain-
ing an expansion for π2/ sin2 πz. We now obtain an expansion for π cotπz
which is meromorphic on C with only simple poles at z = n ∈ Z. In fact, the
principal part is precisely (z − n)−1. Unfortunately, the series

∑
(z − n)−1

is divergent, and hence one has to subtract off a polynomial, which in this
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case turns out to be a constant. Consider the series∑
n6=0

1

z − n
+

1

n
=
∑
n6=0

1

(z − n)n
,

which is compactly convergent on C \ Z as can be seen by comparing with
the series

∑
n−2. Hence the series represents a meromorphic function on

C with simple poles at z = n. Then clearly

H(z) = π cotπz − 1

z
−
∑
n6=0

1

z − n
+

1

n

is an entire function. Moreover, by direct calculation, one can see that for
z /∈ Z (and hence everywhere),

H ′(z) =
π2

sin2 πz
−
∑
n∈Z

1

(z − n)2
= 0

by our expansion from previous lecture. Hence H(z) is a constant. Now,
rewriting the function as

H(z) = π cotπz− lim
m→∞

(1

z
+

m∑
n=−m

1

z − n
+

1

n

)
= π cotπz− 1

z
−
∞∑
n=1

2z

z2 − n2
.

The right hand side is an odd function, and hence H(z) must be zero. Thus
we obtain the identity

(0.1) π cotπz =
1

z
+
∑
n6=0

( 1

z − n
+

1

n

)
.

Infinite products

A infinite product of non-zero complex numbers Π∞n=1pn is said to converge
if

P := lim
n→∞

Πn
k=1pk

exists. If some of the terms are allowed to be zero, then we say that the
infinite product converges if the following two conditions hold

(1) At most a finite number of terms are zero.
(2) If N > 0 such that pn 6= 0 for all k > N , then Π∞k=N+1pn converges

in the above sense.

. If we denote the nth partial product by Pn = Πn
k=1pk, then it is clear that it

any convergent product pn = Pn/Pn−1 converges to 1. Denoting pn = 1+bn,
we say that the product converges absolutely if Π(1 + |bn|) converges. We
then have the following basic fact.

Proposition 0.1. Let {bn} be a sequence of complex functions, none of
which is zero. Then the infinite product Π(1 + bn) (absolutely) converges if
and only the series

∑
log(1 + bn) (absolutely) converges, where log is the

principal branch of the logarithm.
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One can similarly talk about uniform convergence and compact conver-
gence of infinite products. We then have the following counterpart of the
above theorem.

Proposition 0.2. Let {fn} be a sequence of entire. Suppose that for every
compact set K, all but finitely many fns are zero free in K. Then Π∞n=1(1 +
fn(z)) converges compactly (resp. absolutely) on C if and only if

∑
log fn(z)

converges compactly (resp. absolutely) on C. In such a case the infinite
product converges to an entire function.

Note that absolutely convergent products also satisfy the “rearrangement
property”.

Weierstrass factorisation theorem

Theorem 0.2. Let {an} be an arbitrary sequence of non-zero complex num-
bers ordered such that limn→∞ |an| = ∞, if the sequence is infinite. Then
there exists an entire function with zeroes at precisely the points an. More-
over, every entire function with these and no other zeroes (except possibly
at z = 0) is given by

(0.2) f(z) = zmeg(z)Π∞n=1

(
1− z

an

)
eqn(z),

where qn is a polynomial given by

qn(z) =
z

an
+

1

2

( z
an

)2
+ · · ·+ 1

mn

( z
an

)mn

.

The convergence here is absolute, and uniform on compact sets. Further-
more, if there exists some integer h > 0, such that

(0.3)
∑
n

1

|an|1+h
<∞,

then we can take mn = h for all n.

The expression (0.2) above is called the canonical product associated with
{an}, and the smallest integer h satisfying (0.3) (if it exists) is called the
genus of the canonical product. Else the genus is said to be infinite. If g(z)
above reduces to a polynomial, then we say that f(z) is of finite genus, and
the genus of f(z) is defined to be the maximum of the degree of g(z) and h.

Proof. We only prove the second part, and leave the more general statement
as an exercise. So from now on assume that our sequence satisfies (0.3).
We need to prove the existence of polynomials qn(z) such that the infinite
product

Π∞n=1

(
1− z

an

)
eqn(z)

converges to an entire function. By Proposition 0.2, this holds if and only
if the series with the general term

rn(z) = log
(

1− z

an

)
+ qn(z)
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converges compactly. Let R > 1 be arbitrary. We only consider those an
such that |an| > 2R. Then on |z| < R, since |z/an| < 1, the first term in
rn(z) has a power series expansion:

log
(

1− z

an

)
= − z

an
− 1

2

( z
an

)2
− · · · .

For the h as in the hypothesis, we let

qn(z) =
z

an
+

1

2

( z
an

)2
+ · · ·+ 1

h

( z
an

)h
,

so that

rn(z) = − 1

1 + h

( z
an

)h+1
− 1

2 + h

( z
an

)h+2
− · · · .

By comparison with a geometric series, we obtain the estimate that

|rn(z)| ≤ 1

1 + h

( R

|an|

)1+h(
1− R

|an|

)−1
<

2

1 + h

( R

|an|

)1+h
.

By hypothesis,
∑
rn(z) converges absolutely and compactly on |z| ≤ R, and

hence so must the product. Note that even though the proof required us
to work with |an| > 2R, just multiplying in the terms on the product with
|an| ≤ 2R does not affect convergence of the product, since such an’s are
only finite in number. This shows that the product with our choice of qn
converges to an entire function with the required properties. Now suppose
f(z) is any other such entire function with a zero of order m at z = 0. Then
consider the entire function

F (z) =
f(z)

zmΠ∞n=1

(
1− z

an

)
eqn(z)

.

Since the zeroes of the numerator and denominator match up, F (z) clearly
extends as an entire function which is no-where zero. But then by simple
connectivity of C, this implies that one can take a holomorphic branch g(z) =
logF (z). Then clearly f(z) has the expression above. �

Example 0.2. Consider the function sinπz. This is an entire function with
zeroes at z = ±n. Since ∑

n

1

n1+h

converges for h = 2 (and 2 is the smallest such integer), we can apply the
above proposition to obtain

sinπz = zeg(z)Πn∈Z\{0}

(
1− z

n

)
ez/n.

Claim. eg(z) ≡ π.

To see this, we take a logarithmic derivative. Then

π cotπz =
1

z
+ g′(z) +

∑
n 6=0

( 1

z − n
− 1

n

)
.
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Comparing with the expansion of π cotπz, we see that g′(z) has to vanish,
and hence g(z) is a constant. On the other hand,

π = lim
z→0

sinπz

z
= eg(0),

and so eg(z) ≡ π. It follows that f(z) is an entire function of genus 1.
Because of absolute convergence, we can rewrite

sinπz

πz
= Π∞n=1

(
1− z2

n2

)
.

Expanding, and comparing the coefficients of z2, we once again see that

π2

6
=
∞∑
n=1

1

n2
.

This was the original approach of Euler.

We finish with the following elementary corollary, whose proof we leave
as an exercise.

Corollary 0.1. Any meromorphic function in C is the quotient of two entire
functions.
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