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Residue theorem

Let f be a holomorphic function in Dε(p) \ {p} with a Laurent series
expansion

f(z) =

∞∑
n=−∞

an(z − p)n.

The residue of f(z) at z = p is then defined by

Resz=pf(z) = a−1.

Then by Theorem 2 in Lecture 16, for any r < ε,

Resz=pf(z) =
1

2πi

∫
|z−p|=r

f(z) dz.

More generally, we have the following fundamental result.

Theorem 1 (Residue Theorem). Let Ω be open, {pk} ∈ Ω a sequence of
isolated points, and f ∈ O(Ω∗), where Ω∗ := Ω \ {p1, · · · }. Then for any
cycle γ ∼Ω 0 in Ω such that no pk lies on Supp(γ), we have∫

γ
f(z) dz = 2πi

∑
k

n(γ, pk)Respkf(z).

Moreover, for any given γ as above, n(γ, pk) = 0 for all but finitely many k,
and hence the summation above has only a finite number of non-zero terms.

Proof. First let us assume that there are only a finite number of singular
points. Let Ck be a small circle around pk enclosing a disc Dk, such that
Dk ⊂ Ω and such that Ck does not intersect Supp(γ). We now claim that

(0.1) γ ∼Ω∗
∑
k

n(γ, pk)Ck.

Assuming this, we are then done by the generalised Cauchy theorem, since∫
γ
f(z) dz =

∑
k

n(γ, pk)

∫
Ck

f(z) dz

= 2πi
∑
k

n(γ, pk)Resz=pkf(z).
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To prove (0.1) let a /∈ Ω∗. We need to show that

(0.2) n(γ, a) =
∑
k

n(γ, pk)n(Ck, a).

If a /∈ Ω, then by construction a /∈ Dk, and since a disc is simply connected,
n(Ck, a) = 0. On the other hand, since γ ∼Ω 0, we also have that n(γ, a) = 0,
and hence (0.2) is trivially satisfied. If a ∈ Ω, then a = pj for some j. Once
again, as above, n(Ck, a) = 0 for all k 6= j. On the other hand, n(Cj , a) = 1.
This verifies (0.2) and completes the proof of (0.1).

Finally, suppose the number of singularities is infinite in number. It is
enough to prove that n(γ, pk) = 0 for all but finitely many k. Note that

U0 := {a ∈ C | n(γ, a) = 0}
is an open set (since the index is locally constant). Moreover it contains the
annulus AR.∞(0) for R large enough. As a consequence, the set U c = C\U0 is
a compact set and must contain only finitely many pk (since the singularities
are isolated). �

An important corollary is the following.

Corollary 0.1. Let f be holomorphic in Ω except possibly at isolate points
{p1, p2, · · · , } in Ω, and let γ be a positively oriented, simple, closed curve
in Ω not passing through any of the singularities. Then∫

γ
f(z) dz = 2πi

∑
pk∈Int(γ)

Resz=pkf(z).

Proof. This follows from the residue theorem and the fact that

n(γ, pk) =

{
1, z ∈ Int(γ)

0, z ∈ Ext(γ).

�

Our next result helps in computing the residue at poles.

Proposition 0.1. Let f have a pole of order m at p. Then

Resz=pf(z) =
1

(m− 1)!

dm−1

dzm−1

∣∣∣
z=p

(z − p)mf(z).

Proof. If f has a pole of order m, then (z− p)mf(z) has a removable singu-
larity at z = p. Moreover, if the Laurent series expansion for f at p is given
by

f(z) =
∞∑

n=−m
an(z − p)n,

then

(z − p)mf(z) =
∞∑
k=0

ak−m(z − p)k,
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and hence

1

(m− 1)!

dm−1

dzm−1

∣∣∣
z=p

(z − p)mf(z) = am−1−m = a−1 = Resz=pf(z).

�

Example 0.1. Let us evaluate∫
SR

eπ/2z

1 + z2
dz,

where SR is a square of side length 2R centred at the origin and oriented
in an anti-clockwise direction. Let f(z) be the integrand. Then it has three
isolated singularities, namely an essential one at 0 and poles of order one
at ±i. Let us compute the residue at each of the singularities.

• Residue at z = 0. The Laurent series expansion is given by

e(π/2z)

z2 + 1
=
( ∞∑
n=0

πn

2nn!
z−n

)( ∞∑
m=0

(−1)2mz2m
)
,

hence the residue, which is the coefficient of z−1 is given by

Resz=0f(z) =

∞∑
m=0

(−1)m

(2m+ 1)!

(π
2

)2m+1
= sin

(π
2

)
= 1.

• Residue at z = i. By Proposition 0.1, the residue is given by

Resz=if(z) = lim
z→i

(z − i) e
π/2z

z2 + i
=
eπ/2i

2i
= −1

2
.

• Residue at z = −i. Once again by Proposition 0.1, the residue is
given by

Resz=−if(z) = lim
z→−i

(z + i)
eπ/2z

z2 + i
=
e−π/2i

−2i
= −1

2
.

Then by the residue theorem, we have∫
SR

eπ/2z

1 + z2
dz =

{
1, R < 1,

0, R > 1.

The argument principle

Theorem 2 (The argument principle). Let Ω be a domain and f ∈ M(Ω)
zeroes at {aj} or orders {mj} and poles at {bk} of orders {nk}. Then for
every cycle γ ∼Ω 0 which does not pass through any zeroes or poles, we have
that

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
j

n(γ, aj)mj −
∑
k

n(γ, bk)nk.

Furthermore the two summations are finite summations.

As a simple corollary we have the following.
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Corollary 0.2. Let Ω be a simply connected domain and f ∈ O(Ω) with ze-
roes at {aj} or orders {mj}. Then for any simple, closed, positively oriented
curve γ no passing through any of the roots, we have

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
aj∈Int(γ)

mj .

Proof of the argument principle. Note that f ′/f has poles precisely at the
zeroes and poles of f(z), and is holomorphic everywhere else. So the integral
can be computed by using the residue theorem. To do so, we need to compute
the residues of f ′/f . There are two cases.

(1) Residue of f ′/f at z = aj. Near aj , say on Dεj (aj), we can write
f(z) = (z − aj)mjgj(z), where gj(z) is holomorphic and zero free on
Dεj (aj). Then

f ′(z)

f(z)
=

mj

z − aj
+
g′j(z)

gj(z)
.

Since g′j/gj is holomorphic, we have that

Resz=aj
f ′(z)

f(z)
= mj .

(2) Residue of f ′/f at z = bk. Near bk, say on Dεk(bk), we can write
f(z) = (z− bk)−nkg(z), where gk(z) is holomorphic and zero free on
Dεk(bk). Then

f ′(z)

f(z)
= − nk

z − aj
+
g′k(z)

gk(z)
.

Once again, since g′k/gk is holomorphic, we have that

Resz=bk
f ′(z)

f(z)
= −nk.

The theorem then follows by an application of the residue theorem. �

Remark 0.1. More generally, if f is holomorphic, and we take f(z) − w,
then for any simple closed curve γ such that w /∈ f(Supp(γ)),

1

2πi

∫
γ

f ′(z)

f(z)− w
dz =

∑
aj∈Int(γ),f(aj)=w

mj ,

where mj is the order of the zero of f(z)− w at aj.

Argument principle as an index calculation. If γ is a short curve such
that |γ(0)| = |γ(1)|, and not passing through the origin, then the index
n(γ, 0) computes the change in the argument of γ(t) (upto a factor of 2π).
To see this, note that is γ is short enough, then one can define a holomorphic
branch of the logarithm log z in a neighborhood of Supp(γ). Then

n(γ, 0) :=
1

2πi

∫
γ

dz

z
=

log γ(1)− log γ(0)

2πi
=

arg γ(1)− arg(0)

2π
.
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Now, let γ : [0, 1] → Ω be a curve and f ∈ O(Ω). Then Γ(t) = f(γ(t))
defines a curve in C with Γ′(t) = f ′(γ(t))γ′(t). Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫ 1

0

f ′(γ(t))

f(γ(t))
γ′(t) dt =

1

2πi

∫ 1

0

Γ′(t)

Γ(t)
dt =

1

2πi

∫
Γ

dw

w
,

and hence we conclude that

n(Γ, 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz.

So the integral of f ′/f along γ essentially measures the change in argument
of f(z). More generally, together with the remark above, we see that for
any w /∈ f(Supp(γ)),

n(Γ, w) =
1

2πi

∫
γ

f ′(z)

f(z)− w
dz.
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