LECTURE-18

VED V. DATAR*

Residue theorem

Let f be a holomorphic function in $D_{\varepsilon}(p) \backslash\{p\}$ with a Laurent series expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-p)^{n}
$$

The residue of $f(z)$ at $z=p$ is then defined by

$$
\operatorname{Res}_{z=p} f(z)=a_{-1} .
$$

Then by Theorem 2 in Lecture 16, for any $r<\varepsilon$,

$$
\operatorname{Res}_{z=p} f(z)=\frac{1}{2 \pi i} \int_{|z-p|=r} f(z) d z
$$

More generally, we have the following fundamental result.
Theorem 1 (Residue Theorem). Let Ω be open, $\left\{p_{k}\right\} \in \Omega$ a sequence of isolated points, and $f \in \mathcal{O}\left(\Omega^{*}\right)$, where $\Omega^{*}:=\Omega \backslash\left\{p_{1}, \cdots\right\}$. Then for any cycle $\gamma \sim_{\Omega} 0$ in Ω such that no p_{k} lies on Supp (γ), we have

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k} n\left(\gamma, p_{k}\right) \operatorname{Res}_{p_{k}} f(z) .
$$

Moreover, for any given γ as above, $n\left(\gamma, p_{k}\right)=0$ for all but finitely many k, and hence the summation above has only a finite number of non-zero terms.

Proof. First let us assume that there are only a finite number of singular points. Let C_{k} be a small circle around p_{k} enclosing a disc D_{k}, such that $\overline{D_{k}} \subset \Omega$ and such that C_{k} does not intersect $\operatorname{Supp}(\gamma)$. We now claim that

$$
\begin{equation*}
\gamma \sim_{\Omega^{*}} \sum_{k} n\left(\gamma, p_{k}\right) C_{k} . \tag{0.1}
\end{equation*}
$$

Assuming this, we are then done by the generalised Cauchy theorem, since

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\sum_{k} n\left(\gamma, p_{k}\right) \int_{C_{k}} f(z) d z \\
& =2 \pi i \sum_{k} n\left(\gamma, p_{k}\right) \operatorname{Res}_{z=p_{k}} f(z) .
\end{aligned}
$$

To prove (0.1) let $a \notin \Omega^{*}$. We need to show that

$$
\begin{equation*}
n(\gamma, a)=\sum_{k} n\left(\gamma, p_{k}\right) n\left(C_{k}, a\right) . \tag{0.2}
\end{equation*}
$$

If $a \notin \Omega$, then by construction $a \notin \overline{D_{k}}$, and since a disc is simply connected, $n\left(C_{k}, a\right)=0$. On the other hand, since $\gamma \sim_{\Omega} 0$, we also have that $n(\gamma, a)=0$, and hence (0.2) is trivially satisfied. If $a \in \Omega$, then $a=p_{j}$ for some j. Once again, as above, $n\left(C_{k}, a\right)=0$ for all $k \neq j$. On the other hand, $n\left(C_{j}, a\right)=1$. This verifies (0.2) and completes the proof of (0.1).

Finally, suppose the number of singularities is infinite in number. It is enough to prove that $n\left(\gamma, p_{k}\right)=0$ for all but finitely many k. Note that

$$
U_{0}:=\{a \in \mathbb{C} \mid n(\gamma, a)=0\}
$$

is an open set (since the index is locally constant). Moreover it contains the annulus $A_{R . \infty}(0)$ for R large enough. As a consequence, the set $U^{c}=\mathbb{C} \backslash U_{0}$ is a compact set and must contain only finitely many p_{k} (since the singularities are isolated).

An important corollary is the following.
Corollary 0.1. Let f be holomorphic in Ω except possibly at isolate points $\left\{p_{1}, p_{2}, \cdots,\right\}$ in Ω, and let γ be a positively oriented, simple, closed curve in Ω not passing through any of the singularities. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{p_{k} \in \operatorname{Int}(\gamma)} \operatorname{Res}_{z=p_{k}} f(z)
$$

Proof. This follows from the residue theorem and the fact that

$$
n\left(\gamma, p_{k}\right)=\left\{\begin{array}{l}
1, z \in \operatorname{Int}(\gamma) \\
0, z \in \operatorname{Ext}(\gamma) .
\end{array}\right.
$$

Our next result helps in computing the residue at poles.
Proposition 0.1. Let f have a pole of order m at p. Then

$$
\operatorname{Res}_{z=p} f(z)=\left.\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\right|_{z=p}(z-p)^{m} f(z) .
$$

Proof. If f has a pole of order m, then $(z-p)^{m} f(z)$ has a removable singularity at $z=p$. Moreover, if the Laurent series expansion for f at p is given by

$$
f(z)=\sum_{n=-m}^{\infty} a_{n}(z-p)^{n}
$$

then

$$
(z-p)^{m} f(z)=\sum_{\substack{k=0 \\ 2}}^{\infty} a_{k-m}(z-p)^{k},
$$

and hence

$$
\left.\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\right|_{z=p}(z-p)^{m} f(z)=a_{m-1-m}=a_{-1}=\operatorname{Res}_{z=p} f(z)
$$

Example 0.1. Let us evaluate

$$
\int_{S_{R}} \frac{e^{\pi / 2 z}}{1+z^{2}} d z
$$

where S_{R} is a square of side length $2 R$ centred at the origin and oriented in an anti-clockwise direction. Let $f(z)$ be the integrand. Then it has three isolated singularities, namely an essential one at 0 and poles of order one at $\pm i$. Let us compute the residue at each of the singularities.

- Residue at $z=0$. The Laurent series expansion is given by

$$
\frac{e^{(\pi / 2 z)}}{z^{2}+1}=\left(\sum_{n=0}^{\infty} \frac{\pi^{n}}{2^{n} n!} z^{-n}\right)\left(\sum_{m=0}^{\infty}(-1)^{2 m} z^{2 m}\right)
$$

hence the residue, which is the coefficient of z^{-1} is given by

$$
\operatorname{Res}_{z=0} f(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!}\left(\frac{\pi}{2}\right)^{2 m+1}=\sin \left(\frac{\pi}{2}\right)=1
$$

- Residue at $z=i$. By Proposition 0.1, the residue is given by

$$
\operatorname{Res}_{z=i} f(z)=\lim _{z \rightarrow i}(z-i) \frac{e^{\pi / 2 z}}{z^{2}+i}=\frac{e^{\pi / 2 i}}{2 i}=-\frac{1}{2}
$$

- Residue at $z=-i$. Once again by Proposition 0.1, the residue is given by

$$
\operatorname{Res}_{z=-i} f(z)=\lim _{z \rightarrow-i}(z+i) \frac{e^{\pi / 2 z}}{z^{2}+i}=\frac{e^{-\pi / 2 i}}{-2 i}=-\frac{1}{2}
$$

Then by the residue theorem, we have

$$
\int_{S_{R}} \frac{e^{\pi / 2 z}}{1+z^{2}} d z= \begin{cases}1, & R<1 \\ 0, & R>1\end{cases}
$$

The argument Principle

Theorem 2 (The argument principle). Let Ω be a domain and $f \in \mathcal{M}(\Omega)$ zeroes at $\left\{a_{j}\right\}$ or orders $\left\{m_{j}\right\}$ and poles at $\left\{b_{k}\right\}$ of orders $\left\{n_{k}\right\}$. Then for every cycle $\gamma \sim_{\Omega} 0$ which does not pass through any zeroes or poles, we have that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} n\left(\gamma, a_{j}\right) m_{j}-\sum_{k} n\left(\gamma, b_{k}\right) n_{k}
$$

Furthermore the two summations are finite summations.
As a simple corollary we have the following.

Corollary 0.2. Let Ω be a simply connected domain and $f \in \mathcal{O}(\Omega)$ with zeroes at $\left\{a_{j}\right\}$ or orders $\left\{m_{j}\right\}$. Then for any simple, closed, positively oriented curve γ no passing through any of the roots, we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{a_{j} \in \operatorname{Int}(\gamma)} m_{j} .
$$

Proof of the argument principle. Note that f^{\prime} / f has poles precisely at the zeroes and poles of $f(z)$, and is holomorphic everywhere else. So the integral can be computed by using the residue theorem. To do so, we need to compute the residues of f^{\prime} / f. There are two cases.
(1) Residue of f^{\prime} / f at $z=a_{j}$. Near a_{j}, say on $D_{\varepsilon_{j}}\left(a_{j}\right)$, we can write $f(z)=\left(z-a_{j}\right)^{m_{j}} g_{j}(z)$, where $g_{j}(z)$ is holomorphic and zero free on $D_{\varepsilon_{j}}\left(a_{j}\right)$. Then

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m_{j}}{z-a_{j}}+\frac{g_{j}^{\prime}(z)}{g_{j}(z)} .
$$

Since g_{j}^{\prime} / g_{j} is holomorphic, we have that

$$
\operatorname{Res}_{z=a_{j}} \frac{f^{\prime}(z)}{f(z)}=m_{j} .
$$

(2) Residue of f^{\prime} / f at $z=b_{k}$. Near b_{k}, say on $D_{\varepsilon_{k}}\left(b_{k}\right)$, we can write $f(z)=\left(z-b_{k}\right)^{-n_{k}} g(z)$, where $g_{k}(z)$ is holomorphic and zero free on $D_{\varepsilon_{k}}\left(b_{k}\right)$. Then

$$
\frac{f^{\prime}(z)}{f(z)}=-\frac{n_{k}}{z-a_{j}}+\frac{g_{k}^{\prime}(z)}{g_{k}(z)} .
$$

Once again, since g_{k}^{\prime} / g_{k} is holomorphic, we have that

$$
\operatorname{Res}_{z=b_{k}} \frac{f^{\prime}(z)}{f(z)}=-n_{k} .
$$

The theorem then follows by an application of the residue theorem.
Remark 0.1. More generally, if f is holomorphic, and we take $f(z)-w$, then for any simple closed curve γ such that $w \notin f(\operatorname{Supp}(\gamma))$,

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-w} d z=\sum_{a_{j} \in \operatorname{Int}(\gamma), f\left(a_{j}\right)=w} m_{j},
$$

where m_{j} is the order of the zero of $f(z)-w$ at a_{j}.
Argument principle as an index calculation. If γ is a short curve such that $|\gamma(0)|=|\gamma(1)|$, and not passing through the origin, then the index $n(\gamma, 0)$ computes the change in the argument of $\gamma(t)$ (upto a factor of 2π). To see this, note that is γ is short enough, then one can define a holomorphic branch of the $\operatorname{logarithm} \log z$ in a neighborhood of $\operatorname{Supp}(\gamma)$. Then

$$
n(\gamma, 0):=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z}=\frac{\log \gamma(1)-\log \gamma(0)}{2 \pi i}=\frac{\arg \gamma(1)-\arg (0)}{2 \pi} .
$$

Now, let $\gamma:[0,1] \rightarrow \Omega$ be a curve and $f \in \mathcal{O}(\Omega)$. Then $\Gamma(t)=f(\gamma(t))$ defines a curve in \mathbb{C} with $\Gamma^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{0}^{1} \frac{f^{\prime}(\gamma(t))}{f(\gamma(t))} \gamma^{\prime}(t) d t=\frac{1}{2 \pi i} \int_{0}^{1} \frac{\Gamma^{\prime}(t)}{\Gamma(t)} d t=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d w}{w}
$$

and hence we conclude that

$$
n(\Gamma, 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z .
$$

So the integral of f^{\prime} / f along γ essentially measures the change in argument of $f(z)$. More generally, together with the remark above, we see that for any $w \notin f(\operatorname{Supp}(\gamma))$,

$$
n(\Gamma, w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-w} d z
$$

[^0]
[^0]: * Department of Mathematics, Indian Institute of Science

 Email address: vvdatar@iisc.ac.in

