
LECTURE-19

VED V. DATAR∗

In this lecture, we’ll see three important applications of the argument
principle.

Local mapping properties of holomorphic functions

Theorem 1. Let Ω be connected, and f ∈ O(Ω) be a non-constant holomor-
phic function. Suppose f(z0) = w0, and that f(z) − w0 has a zero of order
m at z0. Then there exists an ε0 > 0 such that for any ε < ε0, there exists
a δ = δ(ε) > 0 such that whenever w with 0 < |w − w0| < δ, the equation
f(z) = w has exactly m distinct solutions in Bε(z0) each of multiplicity one.

Proof. First we choose ε0 > 0 such that

(1) f(z)− w0 has no other root in Dε0(z0), and
(2) For all z ∈ Dε0(z0), f ′(z) 6= 0.

The first condition can be achieved since f(z) − w0 is not constant, and
zeroes are isolated. For the second condition, if m = 1, then f ′(z0) 6= 0, and
hence an ε0 > 0 as above can be picked by continuity of f ′(z). If m > 1, then
f ′(z0) = 0. But f ′(z) is also holomorphic, and hence it’s zeroes must also be
isolated. Let γ be the circle |z−z0| = ε oriented in the positive sense, and let
Γ = f ◦γ. Now w0 /∈ Supp(Γ) by propert (1) above, and hence there exists a

δ > 0 such that Dδ(w0) ⊂ C\Supp(Γ). For any w ∈ Dδ(w0), since the index
is locally constant, n(Γ, w) = n(Γ, w0). By our discussion in the previous
lecture, n(Γ, w0) counts the number of zeroes of f(z)−w0 (with multiplicity)
in the interior of γ, which in this case is m. Hence n(Γ, w) = m, and so
f(z) − w also has exactly m solutions in Dε(z0) counted with multiplicity.
Now, look at g(z) = f(z) − w. Since g′(z) 6= 0 for all z ∈ Dε(z0), none of
the roots of g(z) can have multiplicity more than one. Hence f(z) = w has
exactly m distinct solutions in Dε(z0), each with multiplicity one. �

Remark 0.1. The theorem essentially says that locally, holomorphic func-
tions are “branched” or “ramified” covers. That is if f(z0) = w0 with multi-
plicity m, and with ε, δ as above, the map f : Dε(z0)\{z0} → Dδ(w0)\{w0}
is m : 1 covering map, and the m branches come together at z0. If m > 1,
we say that z0 is a branch point, and that m is the branching order. The
prototypical example that one should keep in mind is f(z) = zm. Then
in any small neighbourhood of z = 0 (excluding at zero), then function is

m : 1. Namely, for any w 6= 0, then if w = reiθ, f(r1/mζkme
iθ/m) = w for

k = 0, 1, · · · ,m− 1, where ζm = e2πi/m is the primitive mth root of unity.
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Corollary 0.1 (Open mapping theorem). Let U be and open set, and f :
U → C be any non-constant holomorphic function. Then f(U) is an open
subset of C.

Proof. Let w0 ∈ f(U). Then there exists a z0 ∈ U such that f(z0) = w0.
By the above theorem, there exists a ε > 0 and δ > 0 such that Dε(z0) ⊂ U
and f(z) = w has at least one solution in Dε(z) for each w ∈ Dδ(w0). In
particular, Dδ(w0) ⊂ U , and since w0 was arbitrary, f(U) is open. �

Remark 0.2. This is of course not true in the real setting, even for polyno-
mials, much less real analytic functions. For instance, consider f(x) = x2

on (−1, 1). Then f((−1, 1)) = [0, 1) which is not open.

Given two open sets U and V , we say that f : U → V is a biholomor-
phism if f is bijective, holomorphic, and it’s inverse f−1 : V → U is also
holomorphic.

Corollary 0.2 (Inverse function theorem). Let f ∈ O(Ω), and z0 ∈ Ω such
that f ′(z0) 6= 0, and put w0 = f(z0). Then there exist ε, δ > 0 such that for
every w ∈ Dδ(w0) there exists a unique zw ∈ Dε(z0) such that f(zw) = w.
Moreover we have the following explicit formula for zw:

(0.1) zw =
1

2πi

∫
|z−z0|=r

z
f ′(z)

f(z)− w
dz,

where |zw − z0| < r < ε. In particular, if we set U = f−1(Dδ(w0)) ∩
Dε(z0), then f : U → Dδ(w0) is a biholomorphism with f−1(w) = zw and
(f−1)′(w) = 1/f ′(zw).

Proof. Since f ′(z0) 6= 0, the multiplicity of f(z) = w0 is exactly one at
z = z0. By Theorem 1, there exists ε, δ > 0 such that for all w ∈ Dδ(w0),
there is a unique zw such that f(zw) = w in the disc Dε(z0). Also note that
f ′(z) 6= 0 for all z ∈ Dε(z0). locally To prove the formula for zw, we use the
residue theorem. Consider the function

Hw(z) =
zf ′(z)

f(z)− w
.

Then since f(z) = w has a unique solution in |z− z0| < ε, Hw(z) has a pole
exactly order one at z = zw, and is holomorphic everywhere else. Also note
that f ′(zw) 6= 0. This follows since f(z) − w has a zero of multiplicity one
at zw. We then compute the residue

Resz=zwHw(z) = lim
z→zw

(z − zw)
zf ′(z)

f(z)− w

= zwf
′(zw) lim

z→zw

z − zw
f(z)− f(zw)

= zw.

Then (0.1) is proved by an application of the residue theorem. In particular,
as in the statement of the theorem, if we set U = f−1(Dδ(w0)) ∩ Dε(z0),
then f : U → Dδ(w0) is an injective function with a well defined inverse
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function f−1 : Dδ(w0) → U . By the open mapping theorem this inverse
function is continuous. In fact since in the formula for f−1, the integrand
depends holomorphically on w, an argument similar to the proof of the
CIF for derivative, shows that f−1 is holomorphic. By the chain rule then
(f−1)′(w) = 1/f ′(zw).

�

Remark 0.3. Another proof can be obtained by using the inverse function
theorem from multivariable calculus. Recall that if Jf (z0) is the Jacobian
(determinant) of f when thought of as a map from subset of R2 to R2, then
Jf (z0) = |f ′(z0)|2 6= 0. Hence from the inverse function theorem in calculus,
there exists a local inverse f−1 on an open neighbourhood V of w0 with
continuous partial derivatives. Possibly by shrinking V one can assume that
that f ′(z) 6= 0 on U . All one needs to do is to show that f−1 : V → U
is holomorphic. It is enough to prove that f−1 satisfies CR equations. By
chain rule,

0 =
∂

∂w̄
f ◦ f−1 =

∂f

∂z

∂f−1

∂w̄
+
∂f

∂z̄

∂f−1

∂w̄
= f ′(z)

∂f−1

∂w̄
,

since f is holomorphic. But then since f ′(z) 6= 0, we see that ∂f−1/∂w̄ = 0
at each point.

An elementary but important consequence of the proof is the following.

Corollary 0.3. A holomorphic function is locally injective on an open set
U if and only if for all z ∈ U , f ′(z) 6= 0.

Proof. Suppose f ′(z) is never zero, then the inverse function theorem implies
that the function is locally injective. Conversely, suppose the function is
injective on some Dr(z0), but f ′(z0) = 0. Then by Theorem 1 there exists
a δ > 0, and w ∈ Dδ(f(z0)) such that f(z) = w has at least two distinct
solutions in Dr(z0) contradicting injectivity. �

Once again, the counterpart in real variable theory is false, as can be seen
by considering the function f(x) = x3. This is globablly (and hence locally)
injective, but f ′(0) = 0.

The maximum modulus principle

The next theorem says that for non-constant holomorphic functions f(z),
|f | cannot have local maximums.

Theorem 2 (Max modulus principle). Let Ω be connected and f ∈ O(Ω).
If there exists a z0 ∈ Ω and a neighbourhood U such that |f(z)| ≤ |f(z0)| for
all z ∈ U , then f(z) is a constant.

Proof. By assumption |f(z0)| = supz∈U |f(z)|. If f(z) is non-constant on U ,
then by the open mapping theorem f(U) is an open set. In particular, there
exists a δ > 0 such that for any w ∈ Dδ(f(z0)), there exists z ∈ U such that
f(z) = w. Now simply pick w1 such that |w1| > |f(z0)|. Then there exists
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a z1 ∈ U such that |f(z0)| < |f(z1)| which is a contradiction. Hence f(z)
must be a constant on U . But then by analytic continuation, f(z) must be
a constant on all of Ω. �

As a consequence we have the following estimate.

Corollary 0.4. Let Ω be a bounded set and f ∈ O(Ω) such that f extends
continuously to the boundary ∂Ω. Then

sup
z∈Ω
|f(z)| ≤ sup

z∈∂Ω
|f(z)|.

Proof. It is enough to assume that Ω is connected (or else one could work
with each connected component). Since Ω is compact, there exists a z0 ∈ Ω
such that |f(z0)| = supz∈Ω |f(z)|. If z0 ∈ ∂Ω, there is nothing to prove. If
not, then by the above theorem, z0 is an interior local maximum for |f | and
hence f(z) must be a constant. But in that case the above inequality is
trivial. �

Note that a minimum principle does not hold, as can be seen easily by
considering the function f(z) = z on any neighbourhood of the origin. It
turns out that this is only way in which a minimum principle can fail. Recall
that O∗(Ω) stands for holomorphic functions that are nowhere vanishing on
Ω.

Corollary 0.5 (Minimum principle). Let Ω be connected and f ∈ O∗(Ω).
If there exists a z0 ∈ Ω and a neighbourhood U such that |f(z)| ≥ |f(z0)| for
all z ∈ U , then f(z) is a constant.

Proof. Simply apply the maximum modulus principle to the holomorphic
function g(z) = 1/f(z). �

Remark 0.4. A function u is said to be subharmonic if ∆u ≥ 0 and super-
harmonic if ∆u ≤ 0. It is a general fact that subharmonic functions satisfy
a maximum principle while super harmonic functions satisfy a minimum
principle. In particular, harmonic functions satisfy both a minimum and a
maximum principle. If f(z) is holomorphic, we can compute that

∆|f |2 =
1

4

∂2

∂z∂z̄
|f(z)|2 =

1

4

∂

∂z
f(z)f ′(z) = |f ′(z)|2 ≥ 0.

Hence |f(z)|2 is subharmonic, and must satisfy a maximum principle. Hence
|f(z)| satisfies a maximum principle. On the other hand if |f(z)| is nowhere
vanishing, then log |f(z)|2 is smooth function, and in fact is harmonic as
can be seen from the following computation

∆ log |f |2 =
1

4

∂2

∂z∂z̄
log |f(z)|2 =

1

4

∂2

∂z∂z̄
(log f(z) + log f(z)) = 0.

Note that since f(z) is no-where vanishing at least locally near z one can
define a holomorphic branch of log. The upshot is that log |f(z)|2 must
satisfy a minimum principle, and hence must |f(z)| (since log is increasing).
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Rouche’s theorem

Theorem 3. Let γ be a simple closed curve in Ω and f, g ∈ O(Ω) such that
for all z ∈ Supp(γ),

|f(z)− g(z)| < |g(z)|.
Then f(z) and g(z) have the same number of zeroes in Int(γ).

Proof. Firstly, note that f(z) and g(z) have no zero on γ (the strictness of
the inequality above is crucial precisely for this purpose). Moreover, for all
z ∈ Supp(γ), we have ∣∣∣f(z)

g(z)
− 1
∣∣∣ < 1.

Put F (z) = f(z)/g(z). Then F (z) ∈ M(Ω). Moreover, at the points where
f(z) and g(z) are non-zero (in particular on Supp(γ)), one can easily see
that

F ′(z)

F (z)
=
f ′(z)

f(z)
− g′(z)

g(z)
.

A quick way to see this is that in the nieghbourhood of such points, logF (z)
is well defined and holomorphic, and moreover, logF (z) = log f(z)−log g(z).
Now consider Γ := F ◦ γ, then Γ is a close curve in D1(1). Since D1(1) is
simply connected, and 0 /∈ D1(1), n(Γ, 0) = 0. By the argument principle,

0 = n(Γ, 0) =
1

2πi

∫
γ

F ′(z)

F (z)
dz =

1

2πi

∫
γ

f ′(z)

f(z)
dz − 1

2πi

∫
γ

g′(z)

g(z)
dz.

Once again by argument principle, we see that f(z) and g(z) must have the
same number of zeroes in Int(γ). �

Typically, as can be seen in the example below, the theorem is applied to
count the number of zeroes of f(z). The heart of the matter is to come up
with a suitable g(z), whose zeroes can be counted easily, and such that the
above (strict) inequality can be satisfied.

Example 0.1. Consider the polynomial p(z) = z4 − 6z + 3. We claim that
all it’s roots are contained in the disc D2(0), and three of them are contained
in the annulus A1,2(0). We divide the proof into the following two cases.

• The disc |z| < 2. On the circle |z| = 2 we have the following
estimate

|p(z)− z4| = |6z − 3|
≤ 6|z|+ 3 = 12 + 3 = 15 < |z|4.

By Rouche’s theorem, p(z) has the same number of roots as z4 in
|z| < 2, and hence has four roots in that disc. But p(z) is also a
polynomial of degree four, and hence these four roots must include
all the possible roots of p(z).
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• The disc |z| < 1 + ε for ε << 1. Lets take ε < 1/10. On the circle
|z| = 1 + ε we have the following estimate

|p(z)− (−6z)| = |z4 + 3|
≤ |z|4 + 3 = (1 + ε)4 + 3 < 4.5 < 6(1 + ε) = | − 6z|.

Once again by Rouche’s theorem, p(z) has exactly one root in |z| <
1 + ε, and hence has exactly three roots in 1 + ε ≤ |z| < 2. Since
this is true for all ε << 1, in particular, it has exactly three roots in
A1,2(0).

Remark 0.5. Rouche’s theorem can be used to give another proof of the
fundamental theorem of algebra. Let p(z) = anz

n + an−1z
n−1 + · · ·+ a0 be a

general degree n polynomial (so an 6= 0). It is easy to see that for R >> 1,
if |z| = R, then

|p(z)− anzn| < |an||zn|.
This is essentially because p(z) − anzn is a polynomial of a strictly lower
degree. Now by Rouche’s theorem p(z) and anz

n have the same number of
roots on |z| < R. In particular, p(z) must have exactly n roots on |z| < R.
In fact it can be shown easily (by induction for instance) that it cannot have
any further zeroes.

Appendix : details left out in the proof of Corollary 0.2

To spell out the details on the holomorphicity of f−1 and that the deriv-
ative is 1/f ′(zw), we first note that

f−1(w + h)− f−1(w)

h
=

1

2πih

∫
|z−z0|=r

zf ′(z)
( 1

f(z)− w − h
− 1

f(z)− w

)
dz

=
1

2πi

∫
|z−z0|=r

zf ′(z)

(f(z)− w − h)(f(z)− w)
dz

Now the integrand is continuous and bounded for |h| << 1, and hence we
can take compute the limit by swapping the integral and the limit. That is,

lim
h→0

f−1(w + h)− f−1(w)

h
=

1

2πi

∫
|z−z0|=r

zf ′(z)

(f(z)− w)2
dz.

Another application of the residue theorem shows that the second integral
is precisely 1/f ′(zw). To see this, we observe that

zf ′(z)

(f(z)− w)2
=

(z − zw)f ′(z)

(f(z)− w)2
+ zw

f ′(z)

(f(z)− w)2
.

From the geometric series expansion, one can see that the second term is of
the form

zw
f ′(z)

(f(z)− w)2
=

zw
f ′(zw)2

(z − zw)−2 + g(z),

where g(z) is holomorphic near zw. This relies on the fact that f ′(zw) 6=
0, and hence the numerator has a non-zero constant term in it’s Taylor
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expansion. The upshot is that the second term does not contribute to the
residue. The advantage now is that the first term has a simple pole at
z = zw, and hence we can compute the residue as

Resz=zw
zf ′(z)

(f(z)− w)2
= lim

z→zw

(z − zw)2f ′(z)

(f(z)− w)2
=

1

f ′(zw)
.
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