LECTURE-19

VED V. DATAR*

In this lecture, we’ll see three important applications of the argument
principle.

LOCAL MAPPING PROPERTIES OF HOLOMORPHIC FUNCTIONS

Theorem 1. Let Q be connected, and f € O(Q2) be a non-constant holomor-
phic function. Suppose f(zo) = wo, and that f(z) — wo has a zero of order
m at zg. Then there exists an €y > 0 such that for any € < g¢, there exists
ad = d0(e) > 0 such that whenever w with 0 < |w — wp| < ¢, the equation
f(2) = w has exactly m distinct solutions in B:(29) each of multiplicity one.

Proof. First we choose €y > 0 such that

(1) f(2) — wp has no other root in D, (zp), and
(2) For all z € Dy (20), f'(2) # 0.

The first condition can be achieved since f(z) — wy is not constant, and
zeroes are isolated. For the second condition, if m = 1, then f/(zo) # 0, and
hence an 9 > 0 as above can be picked by continuity of f’(z). If m > 1, then
1'(20) = 0. But f’(z) is also holomorphic, and hence it’s zeroes must also be
isolated. Let «y be the circle |z —zg| = ¢ oriented in the positive sense, and let
I' = fory. Now wy ¢ Supp(I") by propert (1) above, and hence there exists a
d > 0 such that Ds(wp) C C\ Supp(T'). For any w € Ds(wy), since the index
is locally constant, n(I',w) = n(I',wg). By our discussion in the previous
lecture, n(I", wy) counts the number of zeroes of f(z)—wq (with multiplicity)
in the interior of -, which in this case is m. Hence n(I',w) = m, and so
f(2) — w also has exactly m solutions in D.(zp) counted with multiplicity.
Now, look at g(z) = f(z) — w. Since ¢'(z) # 0 for all z € D.(zp), none of
the roots of g(z) can have multiplicity more than one. Hence f(z) = w has
exactly m distinct solutions in D.(zg), each with multiplicity one. O

Remark 0.1. The theorem essentially says that locally, holomorphic func-
tions are “branched” or “ramified” covers. That is if f(z0) = wo with multi-
plicity m, and with €,0 as above, the map f : D:(z0)\ {20} — Ds(wo) \ {wo}
is m : 1 covering map, and the m branches come together at zg. If m > 1,
we say that zg is a branch point, and that m is the branching order. The
prototypical example that one should keep in mind is f(z) = z™. Then
in any small neighbourhood of z = 0 (excluding at zero), then function is
m : 1. Namely, for any w # 0, then if w = re®, f(rt/m¢k /™) = w for
k=0,1,--- ,m—1, where (;,, = e2mi/m s the primitive mt"
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Corollary 0.1 (Open mapping theorem). Let U be and open set, and f :
U — C be any non-constant holomorphic function. Then f(U) is an open
subset of C.

Proof. Let wo € f(U). Then there exists a zg € U such that f(z9) = wo.
By the above theorem, there exists a ¢ > 0 and § > 0 such that D.(z9) C U
and f(z) = w has at least one solution in D.(z) for each w € Ds(wp). In
particular, Ds(wg) C U, and since wy was arbitrary, f(U) is open. O

Remark 0.2. This is of course not true in the real setting, even for polyno-
mials, much less real analytic functions. For instance, consider f(x) = x°
on (—1,1). Then f((—1,1)) =[0,1) which is not open.

Given two open sets U and V', we say that f : U — V is a biholomor-
phism if f is bijective, holomorphic, and it’s inverse f~! : V — U is also
holomorphic.

Corollary 0.2 (Inverse function theorem). Let f € O(Q), and zy € Q such
that f'(z0) # 0, and put wog = f(z0). Then there exist £, > 0 such that for
every w € Ds(wo) there ezists a unique z, € Dg(20) such that f(zy) = w.
Moreover we have the following explicit formula for z:

1 f'(z)
0.1 Ty = — z————dz,
( ) 2mi |z—z0|=r f(Z) - w
where |z, — 20| < 7 < e. In particular, if we set U = f~1(Dgs(wp)) N
D.(z0), then f : U — Dgs(wo) is a biholomorphism with f~1(w) = 2z, and
(f) (w) =1/ f(z0)-

Proof. Since f’(z9) # 0, the multiplicity of f(z) = wy is exactly one at
z = z9. By Theorem 1, there exists £,d > 0 such that for all w € Ds(wy),
there is a unique z, such that f(z,) = w in the disc D.(zp). Also note that
1(2) #0 for all z € D.(29). locally To prove the formula for z,,, we use the
residue theorem. Consider the function

Hy(z) = M

f(z) —w
Then since f(z) = w has a unique solution in |z — 29| < &, Hy(2) has a pole
exactly order one at z = z,,, and is holomorphic everywhere else. Also note
that f’(zy) # 0. This follows since f(z) — w has a zero of multiplicity one
at z,. We then compute the residue

Zz—2Zw f(z) — f(Zw) - R

Then (0.1) is proved by an application of the residue theorem. In particular,

as in the statement of the theorem, if we set U = f~1(Ds(wg)) N De(20),

then f : U — Ds(wp) is an injective function with a well defined inverse
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function f~!' : Ds(wg) — U. By the open mapping theorem this inverse
function is continuous. In fact since in the formula for f~!, the integrand
depends holomorphically on w, an argument similar to the proof of the
CIF for derivative, shows that f~! is holomorphic. By the chain rule then
(Y (w) = 1/ (2a)-

O

Remark 0.3. Another proof can be obtained by using the inverse function
theorem from multivariable calculus. Recall that if J¢(z0) is the Jacobian
(determinant) of f when thought of as a map from subset of R? to R?, then
Jf(20) = |f'(20)|* # 0. Hence from the inverse function theorem in calculus,
there exists a local inverse f~' on an open neighbourhood V of wg with
continuous partial derivatives. Possibly by shrinking V' one can assume that
that f'(z) # 0 on U. All one needs to do is to show that f~1 : V — U
is holomorphic. It is enough to prove that f~' satisfies CR equations. By
chain rule,

_ 0 o ofaft ofof ', of
=8’ T ow Tz D w
since f is holomorphic. But then since f'(z) # 0, we see that Of 1 /0w = 0
at each point.

An elementary but important consequence of the proof is the following.

Corollary 0.3. A holomorphic function is locally injective on an open set

U if and only if for all z € U, f'(z) # 0.

Proof. Suppose f’(z) is never zero, then the inverse function theorem implies
that the function is locally injective. Conversely, suppose the function is
injective on some D, (zp), but f'(z0) = 0. Then by Theorem 1 there exists
ad >0, and w € Ds(f(z0)) such that f(z) = w has at least two distinct
solutions in D, (zp) contradicting injectivity. O

Once again, the counterpart in real variable theory is false, as can be seen
by considering the function f(x) = 3. This is globablly (and hence locally)
injective, but f/(0) = 0.

THE MAXIMUM MODULUS PRINCIPLE

The next theorem says that for non-constant holomorphic functions f(z),
| f| cannot have local maximums.

3

Theorem 2 (Max modulus principle). Let © be connected and f € O(R).
If there exists a zp € Q and a neighbourhood U such that |f(z)| < |f(z0)| fo
all z € U, then f(z) is a constant.

Proof. By assumption |f(z0)| = sup,cyy |f(2)]. If f(2) is non-constant on U,

then by the open mapping theorem f(U) is an open set. In particular, there

exists a § > 0 such that for any w € Ds(f(20)), there exists z € U such that

f(2) = w. Now simply pick wy such that |wi1| > |f(20)|. Then there exists
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a z1 € U such that |f(z9)| < |f(z1)| which is a contradiction. Hence f(z)
must be a constant on U. But then by analytic continuation, f(z) must be
a constant on all of 2. O

As a consequence we have the following estimate.

Corollary 0.4. Let Q be a bounded set and f € O(Q) such that f extends
continuously to the boundary 0). Then

sup |f(2)| < sup |f(z)
2€Q) 2€002

Proof. It is enough to assume that €2 is connected (or else one could work
with each connected component). Since € is compact, there exists a zg € Q
such that |f(z20)| = sup, g |f(2)]. If 20 € 09, there is nothing to prove. If
not, then by the above theorem, z is an interior local maximum for | f| and
hence f(z) must be a constant. But in that case the above inequality is
trivial. O

Note that a minimum principle does not hold, as can be seen easily by
considering the function f(z) = z on any neighbourhood of the origin. It
turns out that this is only way in which a minimum principle can fail. Recall

that O*(Q2) stands for holomorphic functions that are nowhere vanishing on
Q.

Corollary 0.5 (Minimum principle). Let 2 be connected and f € O*(Q).
If there exists a zy € 2 and a neighbourhood U such that |f(z)| > |f(z0)| for
all z € U, then f(z) is a constant.

Proof. Simply apply the maximum modulus principle to the holomorphic
function g(z) = 1/f(2). O

Remark 0.4. A function u is said to be subharmonic if Au > 0 and super-
harmonic if Au < 0. It is a general fact that subharmonic functions satisfy
a mazimum principle while super harmonic functions satisfy a minimum
principle. In particular, harmonic functions satisfy both a minimum and a
mazximum principle. If f(z) is holomorphic, we can compute that

Lo 19 ) /
Zazaz|f(z>|2 =15,/ =S (2)]? > 0.

Hence | f(2)|? is subharmonic, and must satisfy a maximum principle. Hence
|f(2)| satisfies a maximum principle. On the other hand if | f(z)| is nowhere
vanishing, then log|f(2)|? is smooth function, and in fact is harmonic as
can be seen from the following computation

0? 1 02 —

1
Alog|f1? = ;5= log |£(2)|* = ;o= (log f(2) + log (=) = 0.

Note that since f(z) is no-where vanishing at least locally near z one can

define a holomorphic branch of log. The upshot is that log|f(2)|> must

satisfy a minimum principle, and hence must | f(2)| (since log is increasing).
4
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ROUCHE’S THEOREM
Theorem 3. Let vy be a simple closed curve in Q and f,g € O(Q) such that
for all z € Supp(7),
1f(z) = g(=)| <lg(2)I.
Then f(z) and g(z) have the same number of zeroes in Int(7y).
Proof. Firstly, note that f(z) and g(z) have no zero on v (the strictness of

the inequality above is crucial precisely for this purpose). Moreover, for all
z € Supp(y), we have

‘f (2)
9(2)
Put F(z) = f(2)/g(z). Then F(z) € M(R2). Moreover, at the points where
f(2) and g(z) are non-zero (in particular on Supp(7)), one can easily see

that

F'(z) _f'(z) 4

F(z)  f(z)  g(z)
A quick way to see this is that in the nieghbourhood of such points, log F(z)
is well defined and holomorphic, and moreover, log F'(z) = log f(z)—log g(z).
Now consider I' := F o «y, then I is a close curve in D;(1). Since D;(1) is
simply connected, and 0 ¢ D;(1), n(I',0) = 0. By the argument principle,

1 F’ 1 ! 1 !
Ozn(F,O):,/ (Z)dz:,/f(z)dz—, g(z)dz
2mi J., F(z) 2mi Jy f(2) 2mi J, g(2)
Once again by argument principle, we see that f(z) and ¢g(z) must have the
same number of zeroes in Int(y). O

—1‘<1.

Typically, as can be seen in the example below, the theorem is applied to
count the number of zeroes of f(z). The heart of the matter is to come up
with a suitable g(z), whose zeroes can be counted easily, and such that the
above (strict) inequality can be satisfied.

Example 0.1. Consider the polynomial p(z) = z* — 6z + 3. We claim that
all it’s roots are contained in the disc D2(0), and three of them are contained
in the annulus A1 2(0). We divide the proof into the following two cases.

e The disc |z| < 2. On the circle |z| = 2 we have the following
estimate

p(2) — 2| = 162 — 3|
<6|z] +3=12+3=15< |z|~

By Rouche’s theorem, p(z) has the same number of roots as z* in

|z| < 2, and hence has four roots in that disc. But p(z) is also a
polynomial of degree four, and hence these four roots must include
all the possible roots of p(z).
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e The disc |z| < 1+4¢ for € << 1. Lets take ¢ < 1/10. On the circle
|z| = 1+ ¢ we have the following estimate

p(2) = (=62)] = [z* + 3]
<P +3=(1+e)'+3<45<6(1+¢)=]|- 62

Once again by Rouche’s theorem, p(z) has exactly one root in |z| <
1 + ¢, and hence has exactly three roots in 1 +¢ < |z| < 2. Since
this is true for all e << 1, in particular, it has exactly three roots in

A1 2(0).

Remark 0.5. Rouche’s theorem can be used to give another proof of the
fundamental theorem of algebra. Let p(z) = an2™ +an_12""1 +---+ag be a
general degree n polynomial (so a, # 0). It is easy to see that for R >> 1,
if |z2| = R, then
1p(2) — n="] < lan]2").

This is essentially because p(z) — anz™ is a polynomial of a strictly lower
degree. Now by Rouche’s theorem p(z) and a,z" have the same number of
roots on |z| < R. In particular, p(z) must have exactly n roots on |z| < R.
In fact it can be shown easily (by induction for instance) that it cannot have
any further zeroes.

APPENDIX : DETAILS LEFT OUT IN THE PROOF OF COROLLARY 0.2

To spell out the details on the holomorphicity of f~' and that the deriv-
ative is 1/f'(zy,), we first note that

SN wth) = fHw) 1 / 1 1
h  2mih /|Z_ZO|TZf (Z)(f(z) —w—h f(z) —w)dz

L ') .

2m |z—2z0|=r (f(z) —w— h)(f(z) - w)
Now the integrand is continuous and bounded for |h| << 1, and hence we
can take compute the limit by swapping the integral and the limit. That is,

fHwth)— fHw) 1 / 2f'(2)
= g dz
|z—z0|=r (f(Z) - w)
Another application of the residue theorem shows that the second integral
is precisely 1/f’(zy). To see this, we observe that

2f'(z) (2= z)f'(2) f'(z)
2 = 5 12w 2"
(f(z) —w)*  (f(z) —w) (f(z) —w)
From the geometric series expansion, one can see that the second term is of
the form
f'(z) “w

(f(2) —w)* (20
where g(z) is holomorphic near z,. This relies on the fact that f'(z,) #
0, and hence the numerator has a non-zero constant term in it’s Taylor
6
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expansion. The upshot is that the second term does not contribute to the
residue. The advantage now is that the first term has a simple pole at
z = 2y, and hence we can compute the residue as
) o)1

= lim = .
(f(z) —w)? =z (f(z)—w)?  f(z0)
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