LECTURE-19

VED V. DATAR*

In this lecture, we'll see three important applications of the argument principle.

LOCAL MAPPING PROPERTIES OF HOLOMORPHIC FUNCTIONS

Theorem 1. Let Ω be connected, and $f \in \mathcal{O}(\Omega)$ be a non-constant holomorphic function. Suppose $f(z_0) = w_0$, and that $f(z) - w_0$ has a zero of order m at z_0 . Then there exists an $\varepsilon_0 > 0$ such that for any $\varepsilon < \varepsilon_0$, there exists $a \ \delta = \delta(\varepsilon) > 0$ such that whenever w with $0 < |w - w_0| < \delta$, the equation f(z) = w has exactly m distinct solutions in $B_{\varepsilon}(z_0)$ each of multiplicity one.

Proof. First we choose $\varepsilon_0 > 0$ such that

- (1) $f(z) w_0$ has no other root in $D_{\varepsilon_0}(z_0)$, and
- (2) For all $z \in D_{\varepsilon_0}(z_0), f'(z) \neq 0$.

The first condition can be achieved since $f(z) - w_0$ is not constant, and zeroes are isolated. For the second condition, if m = 1, then $f'(z_0) \neq 0$, and hence an $\varepsilon_0 > 0$ as above can be picked by continuity of f'(z). If m > 1, then $f'(z_0) = 0$. But f'(z) is also holomorphic, and hence it's zeroes must also be isolated. Let γ be the circle $|z - z_0| = \varepsilon$ oriented in the positive sense, and let $\Gamma = f \circ \gamma$. Now $w_0 \notin \text{Supp}(\Gamma)$ by propert (1) above, and hence there exists a $\delta > 0$ such that $\overline{D_{\delta}(w_0)} \subset \mathbb{C} \setminus \text{Supp}(\Gamma)$. For any $w \in D_{\delta}(w_0)$, since the index is locally constant, $n(\Gamma, w) = n(\Gamma, w_0)$. By our discussion in the previous lecture, $n(\Gamma, w_0)$ counts the number of zeroes of $f(z) - w_0$ (with multiplicity) in the interior of γ , which in this case is m. Hence $n(\Gamma, w) = m$, and so f(z) - w also has exactly m solutions in $D_{\varepsilon}(z_0)$ counted with multiplicity. Now, look at g(z) = f(z) - w. Since $g'(z) \neq 0$ for all $z \in D_{\varepsilon}(z_0)$, none of the roots of g(z) can have multiplicity more than one. Hence f(z) = w has exactly m distinct solutions in $D_{\varepsilon}(z_0)$, each with multiplicity one.

Remark 0.1. The theorem essentially says that locally, holomorphic functions are "branched" or "ramified" covers. That is if $f(z_0) = w_0$ with multiplicity m, and with ε , δ as above, the map $f: D_{\varepsilon}(z_0) \setminus \{z_0\} \to D_{\delta}(w_0) \setminus \{w_0\}$ is m: 1 covering map, and the m branches come together at z_0 . If m > 1, we say that z_0 is a branch point, and that m is the branching order. The prototypical example that one should keep in mind is $f(z) = z^m$. Then in any small neighbourhood of z = 0 (excluding at zero), then function is m: 1. Namely, for any $w \neq 0$, then if $w = re^{i\theta}$, $f(r^{1/m}\zeta_m^k e^{i\theta/m}) = w$ for $k = 0, 1, \dots, m-1$, where $\zeta_m = e^{2\pi i/m}$ is the primitive m^{th} root of unity. **Corollary 0.1** (Open mapping theorem). Let U be and open set, and $f : U \to \mathbb{C}$ be any non-constant holomorphic function. Then f(U) is an open subset of \mathbb{C} .

Proof. Let $w_0 \in f(U)$. Then there exists a $z_0 \in U$ such that $f(z_0) = w_0$. By the above theorem, there exists a $\varepsilon > 0$ and $\delta > 0$ such that $D_{\varepsilon}(z_0) \subset U$ and f(z) = w has at least one solution in $D_{\varepsilon}(z)$ for each $w \in D_{\delta}(w_0)$. In particular, $D_{\delta}(w_0) \subset U$, and since w_0 was arbitrary, f(U) is open. \Box

Remark 0.2. This is of course not true in the real setting, even for polynomials, much less real analytic functions. For instance, consider $f(x) = x^2$ on (-1, 1). Then f((-1, 1)) = [0, 1) which is not open.

Given two open sets U and V, we say that $f: U \to V$ is a *biholomorphism* if f is bijective, holomorphic, and it's inverse $f^{-1}: V \to U$ is also holomorphic.

Corollary 0.2 (Inverse function theorem). Let $f \in \mathcal{O}(\Omega)$, and $z_0 \in \Omega$ such that $f'(z_0) \neq 0$, and put $w_0 = f(z_0)$. Then there exist $\varepsilon, \delta > 0$ such that for every $w \in D_{\delta}(w_0)$ there exists a unique $z_w \in D_{\varepsilon}(z_0)$ such that $f(z_w) = w$. Moreover we have the following explicit formula for z_w :

(0.1)
$$z_w = \frac{1}{2\pi i} \int_{|z-z_0|=r} z \frac{f'(z)}{f(z)-w} \, dz,$$

where $|z_w - z_0| < r < \varepsilon$. In particular, if we set $U = f^{-1}(D_{\delta}(w_0)) \cap D_{\varepsilon}(z_0)$, then $f: U \to D_{\delta}(w_0)$ is a biholomorphism with $f^{-1}(w) = z_w$ and $(f^{-1})'(w) = 1/f'(z_w)$.

Proof. Since $f'(z_0) \neq 0$, the multiplicity of $f(z) = w_0$ is exactly one at $z = z_0$. By Theorem 1, there exists $\varepsilon, \delta > 0$ such that for all $w \in D_{\delta}(w_0)$, there is a unique z_w such that $f(z_w) = w$ in the disc $D_{\varepsilon}(z_0)$. Also note that $f'(z) \neq 0$ for all $z \in D_{\varepsilon}(z_0)$. locally To prove the formula for z_w , we use the residue theorem. Consider the function

$$H_w(z) = \frac{zf'(z)}{f(z) - w}.$$

Then since f(z) = w has a unique solution in $|z - z_0| < \varepsilon$, $H_w(z)$ has a pole exactly order one at $z = z_w$, and is holomorphic everywhere else. Also note that $f'(z_w) \neq 0$. This follows since f(z) - w has a zero of multiplicity one at z_w . We then compute the residue

$$\operatorname{Res}_{z=z_w} H_w(z) = \lim_{z \to z_w} (z - z_w) \frac{z f'(z)}{f(z) - w} = z_w f'(z_w) \lim_{z \to z_w} \frac{z - z_w}{f(z) - f(z_w)} = z_w.$$

Then (0.1) is proved by an application of the residue theorem. In particular, as in the statement of the theorem, if we set $U = f^{-1}(D_{\delta}(w_0)) \cap D_{\varepsilon}(z_0)$, then $f: U \to D_{\delta}(w_0)$ is an injective function with a well defined inverse function $f^{-1}: D_{\delta}(w_0) \to U$. By the open mapping theorem this inverse function is continuous. In fact since in the formula for f^{-1} , the integrand depends holomorphically on w, an argument similar to the proof of the CIF for derivative, shows that f^{-1} is holomorphic. By the chain rule then $(f^{-1})'(w) = 1/f'(z_w)$.

Remark 0.3. Another proof can be obtained by using the inverse function theorem from multivariable calculus. Recall that if $J_f(z_0)$ is the Jacobian (determinant) of f when thought of as a map from subset of \mathbb{R}^2 to \mathbb{R}^2 , then $J_f(z_0) = |f'(z_0)|^2 \neq 0$. Hence from the inverse function theorem in calculus, there exists a local inverse f^{-1} on an open neighbourhood V of w_0 with continuous partial derivatives. Possibly by shrinking V one can assume that that $f'(z) \neq 0$ on U. All one needs to do is to show that $f^{-1} : V \to U$ is holomorphic. It is enough to prove that f^{-1} satisfies CR equations. By chain rule,

$$0 = \frac{\partial}{\partial \bar{w}} f \circ f^{-1} = \frac{\partial f}{\partial z} \frac{\partial f^{-1}}{\partial \bar{w}} + \frac{\partial f}{\partial \bar{z}} \frac{\partial \overline{f^{-1}}}{\partial \bar{w}} = f'(z) \frac{\partial f^{-1}}{\partial \bar{w}},$$

since f is holomorphic. But then since $f'(z) \neq 0$, we see that $\partial f^{-1}/\partial \bar{w} = 0$ at each point.

An elementary but important consequence of the proof is the following.

Corollary 0.3. A holomorphic function is locally injective on an open set U if and only if for all $z \in U$, $f'(z) \neq 0$.

Proof. Suppose f'(z) is never zero, then the inverse function theorem implies that the function is locally injective. Conversely, suppose the function is injective on some $D_r(z_0)$, but $f'(z_0) = 0$. Then by Theorem 1 there exists a $\delta > 0$, and $w \in D_{\delta}(f(z_0))$ such that f(z) = w has at least two distinct solutions in $D_r(z_0)$ contradicting injectivity. \Box

Once again, the counterpart in real variable theory is false, as can be seen by considering the function $f(x) = x^3$. This is globably (and hence locally) injective, but f'(0) = 0.

THE MAXIMUM MODULUS PRINCIPLE

The next theorem says that for non-constant holomorphic functions f(z), |f| cannot have local maximums.

Theorem 2 (Max modulus principle). Let Ω be connected and $f \in \mathcal{O}(\Omega)$. If there exists a $z_0 \in \Omega$ and a neighbourhood U such that $|f(z)| \leq |f(z_0)|$ for all $z \in U$, then f(z) is a constant.

Proof. By assumption $|f(z_0)| = \sup_{z \in U} |f(z)|$. If f(z) is non-constant on U, then by the open mapping theorem f(U) is an open set. In particular, there exists a $\delta > 0$ such that for any $w \in D_{\delta}(f(z_0))$, there exists $z \in U$ such that f(z) = w. Now simply pick w_1 such that $|w_1| > |f(z_0)|$. Then there exists

a $z_1 \in U$ such that $|f(z_0)| < |f(z_1)|$ which is a contradiction. Hence f(z) must be a constant on U. But then by analytic continuation, f(z) must be a constant on all of Ω .

As a consequence we have the following estimate.

Corollary 0.4. Let Ω be a bounded set and $f \in \mathcal{O}(\Omega)$ such that f extends continuously to the boundary $\partial\Omega$. Then

$$\sup_{z \in \Omega} |f(z)| \le \sup_{z \in \partial \Omega} |f(z)|.$$

Proof. It is enough to assume that Ω is connected (or else one could work with each connected component). Since $\overline{\Omega}$ is compact, there exists a $z_0 \in \overline{\Omega}$ such that $|f(z_0)| = \sup_{z \in \overline{\Omega}} |f(z)|$. If $z_0 \in \partial \Omega$, there is nothing to prove. If not, then by the above theorem, z_0 is an interior local maximum for |f| and hence f(z) must be a constant. But in that case the above inequality is trivial.

Note that a minimum principle does not hold, as can be seen easily by considering the function f(z) = z on any neighbourhood of the origin. It turns out that this is only way in which a minimum principle can fail. Recall that $\mathcal{O}^*(\Omega)$ stands for holomorphic functions that are nowhere vanishing on Ω .

Corollary 0.5 (Minimum principle). Let Ω be connected and $f \in \mathcal{O}^*(\Omega)$. If there exists a $z_0 \in \Omega$ and a neighbourhood U such that $|f(z)| \ge |f(z_0)|$ for all $z \in U$, then f(z) is a constant.

Proof. Simply apply the maximum modulus principle to the holomorphic function g(z) = 1/f(z).

Remark 0.4. A function u is said to be subharmonic if $\Delta u \ge 0$ and superharmonic if $\Delta u \le 0$. It is a general fact that subharmonic functions satisfy a maximum principle while super harmonic functions satisfy a minimum principle. In particular, harmonic functions satisfy both a minimum and a maximum principle. If f(z) is holomorphic, we can compute that

$$\Delta |f|^2 = \frac{1}{4} \frac{\partial^2}{\partial z \partial \bar{z}} |f(z)|^2 = \frac{1}{4} \frac{\partial}{\partial z} f(z) \overline{f'(z)} = |f'(z)|^2 \ge 0.$$

Hence $|f(z)|^2$ is subharmonic, and must satisfy a maximum principle. Hence |f(z)| satisfies a maximum principle. On the other hand if |f(z)| is nowhere vanishing, then $\log |f(z)|^2$ is smooth function, and in fact is harmonic as can be seen from the following computation

$$\Delta \log |f|^2 = \frac{1}{4} \frac{\partial^2}{\partial z \partial \bar{z}} \log |f(z)|^2 = \frac{1}{4} \frac{\partial^2}{\partial z \partial \bar{z}} (\log f(z) + \log \overline{f(z)}) = 0.$$

Note that since f(z) is no-where vanishing at least locally near z one can define a holomorphic branch of log. The upshot is that $\log |f(z)|^2$ must satisfy a minimum principle, and hence must |f(z)| (since log is increasing).

ROUCHE'S THEOREM

Theorem 3. Let γ be a simple closed curve in Ω and $f, g \in \mathcal{O}(\Omega)$ such that for all $z \in Supp(\gamma)$,

$$|f(z) - g(z)| < |g(z)|.$$

Then f(z) and g(z) have the same number of zeroes in $Int(\gamma)$.

Proof. Firstly, note that f(z) and g(z) have no zero on γ (the strictness of the inequality above is crucial precisely for this purpose). Moreover, for all $z \in Supp(\gamma)$, we have

$$\left|\frac{f(z)}{g(z)} - 1\right| < 1.$$

Put F(z) = f(z)/g(z). Then $F(z) \in \mathcal{M}(\Omega)$. Moreover, at the points where f(z) and g(z) are non-zero (in particular on $Supp(\gamma)$), one can easily see that

$$\frac{F'(z)}{F(z)} = \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)}.$$

A quick way to see this is that in the nieghbourhood of such points, $\log F(z)$ is well defined and holomorphic, and moreover, $\log F(z) = \log f(z) - \log g(z)$. Now consider $\Gamma := F \circ \gamma$, then Γ is a close curve in $D_1(1)$. Since $D_1(1)$ is simply connected, and $0 \notin D_1(1)$, $n(\Gamma, 0) = 0$. By the argument principle,

$$0 = n(\Gamma, 0) = \frac{1}{2\pi i} \int_{\gamma} \frac{F'(z)}{F(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz - \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz.$$

Once again by argument principle, we see that f(z) and g(z) must have the same number of zeroes in $Int(\gamma)$.

Typically, as can be seen in the example below, the theorem is applied to count the number of zeroes of f(z). The heart of the matter is to come up with a suitable g(z), whose zeroes can be counted easily, and such that the above (strict) inequality can be satisfied.

Example 0.1. Consider the polynomial $p(z) = z^4 - 6z + 3$. We claim that all it's roots are contained in the disc $D_2(0)$, and three of them are contained in the annulus $A_{1,2}(0)$. We divide the proof into the following two cases.

• The disc |z| < 2. On the circle |z| = 2 we have the following estimate

$$|p(z) - z^4| = |6z - 3|$$

$$\leq 6|z| + 3 = 12 + 3 = 15 < |z|^4.$$

By Rouche's theorem, p(z) has the same number of roots as z^4 in |z| < 2, and hence has four roots in that disc. But p(z) is also a polynomial of degree four, and hence these four roots must include all the possible roots of p(z).

The disc |z| < 1 + ε for ε << 1. Lets take ε < 1/10. On the circle
 |z| = 1 + ε we have the following estimate

$$|p(z) - (-6z)| = |z^4 + 3|$$

$$\leq |z|^4 + 3 = (1 + \varepsilon)^4 + 3 < 4.5 < 6(1 + \varepsilon) = |-6z|.$$

Once again by Rouche's theorem, p(z) has exactly one root in $|z| < 1 + \varepsilon$, and hence has exactly three roots in $1 + \varepsilon \leq |z| < 2$. Since this is true for all $\varepsilon \ll 1$, in particular, it has exactly three roots in $A_{1,2}(0)$.

Remark 0.5. Rouche's theorem can be used to give another proof of the fundamental theorem of algebra. Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ be a general degree n polynomial (so $a_n \neq 0$). It is easy to see that for R >> 1, if |z| = R, then

$$|p(z) - a_n z^n| < |a_n| |z^n|$$

This is essentially because $p(z) - a_n z^n$ is a polynomial of a strictly lower degree. Now by Rouche's theorem p(z) and $a_n z^n$ have the same number of roots on |z| < R. In particular, p(z) must have exactly n roots on |z| < R. In fact it can be shown easily (by induction for instance) that it cannot have any further zeroes.

Appendix : details left out in the proof of Corollary 0.2

To spell out the details on the holomorphicity of f^{-1} and that the derivative is $1/f'(z_w)$, we first note that

$$\frac{f^{-1}(w+h) - f^{-1}(w)}{h} = \frac{1}{2\pi i h} \int_{|z-z_0|=r} zf'(z) \left(\frac{1}{f(z) - w - h} - \frac{1}{f(z) - w}\right) dz$$
$$= \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{zf'(z)}{(f(z) - w - h)(f(z) - w)} dz$$

Now the integrand is continuous and bounded for $|h| \ll 1$, and hence we can take compute the limit by swapping the integral and the limit. That is,

$$\lim_{h \to 0} \frac{f^{-1}(w+h) - f^{-1}(w)}{h} = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{zf'(z)}{(f(z)-w)^2} \, dz.$$

Another application of the residue theorem shows that the second integral is precisely $1/f'(z_w)$. To see this, we observe that

$$\frac{zf'(z)}{(f(z)-w)^2} = \frac{(z-z_w)f'(z)}{(f(z)-w)^2} + z_w \frac{f'(z)}{(f(z)-w)^2}.$$

From the geometric series expansion, one can see that the second term is of the form

$$z_w \frac{f'(z)}{(f(z)-w)^2} = \frac{z_w}{f'(z_w)^2} (z-z_w)^{-2} + g(z),$$

where g(z) is holomorphic near z_w . This relies on the fact that $f'(z_w) \neq 0$, and hence the numerator has a non-zero constant term in it's Taylor

expansion. The upshot is that the second term does not contribute to the residue. The advantage now is that the first term has a simple pole at $z = z_w$, and hence we can compute the residue as

$$\operatorname{Res}_{z=z_w} \frac{zf'(z)}{(f(z)-w)^2} = \lim_{z \to z_w} \frac{(z-z_w)^2 f'(z)}{(f(z)-w)^2} = \frac{1}{f'(z_w)}.$$

* DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE *Email address:* vvdatar@iisc.ac.in