LECTURE-19

VED V. DATAR*

In this lecture, we'll see three important applications of the argument principle.

LOCAL MAPPING PROPERTIES OF HOLOMORPHIC FUNCTIONS

Theorem 1. Let Ω be connected, and $f \in \mathcal{O}(\Omega)$ be a non-constant holomorphic function. Suppose $f\left(z_{0}\right)=w_{0}$, and that $f(z)-w_{0}$ has a zero of order m at z_{0}. Then there exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, there exists $a \delta=\delta(\varepsilon)>0$ such that whenever w with $0<\left|w-w_{0}\right|<\delta$, the equation $f(z)=w$ has exactly m distinct solutions in $B_{\varepsilon}\left(z_{0}\right)$ each of multiplicity one.

Proof. First we choose $\varepsilon_{0}>0$ such that
(1) $f(z)-w_{0}$ has no other root in $\overline{D_{\varepsilon_{0}}\left(z_{0}\right)}$, and
(2) For all $z \in D_{\varepsilon_{0}}\left(z_{0}\right), f^{\prime}(z) \neq 0$.

The first condition can be achieved since $f(z)-w_{0}$ is not constant, and zeroes are isolated. For the second condition, if $m=1$, then $f^{\prime}\left(z_{0}\right) \neq 0$, and hence an $\varepsilon_{0}>0$ as above can be picked by continuity of $f^{\prime}(z)$. If $m>1$, then $f^{\prime}\left(z_{0}\right)=0$. But $f^{\prime}(z)$ is also holomorphic, and hence it's zeroes must also be isolated. Let γ be the circle $\left|z-z_{0}\right|=\varepsilon$ oriented in the positive sense, and let $\Gamma=f \circ \gamma$. Now $w_{0} \notin \operatorname{Supp}(\Gamma)$ by propert (1) above, and hence there exists a $\delta>0$ such that $\overline{D_{\delta}\left(w_{0}\right)} \subset \mathbb{C} \backslash \operatorname{Supp}(\Gamma)$. For any $w \in D_{\delta}\left(w_{0}\right)$, since the index is locally constant, $n(\Gamma, w)=n\left(\Gamma, w_{0}\right)$. By our discussion in the previous lecture, $n\left(\Gamma, w_{0}\right)$ counts the number of zeroes of $f(z)-w_{0}$ (with multiplicity) in the interior of γ, which in this case is m. Hence $n(\Gamma, w)=m$, and so $f(z)-w$ also has exactly m solutions in $D_{\varepsilon}\left(z_{0}\right)$ counted with multiplicity. Now, look at $g(z)=f(z)-w$. Since $g^{\prime}(z) \neq 0$ for all $z \in D_{\varepsilon}\left(z_{0}\right)$, none of the roots of $g(z)$ can have multiplicity more than one. Hence $f(z)=w$ has exactly m distinct solutions in $D_{\varepsilon}\left(z_{0}\right)$, each with multiplicity one.

Remark 0.1. The theorem essentially says that locally, holomorphic functions are "branched" or "ramified" covers. That is if $f\left(z_{0}\right)=w_{0}$ with multiplicity m, and with ε, δ as above, the map $f: D_{\varepsilon}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow D_{\delta}\left(w_{0}\right) \backslash\left\{w_{0}\right\}$ is $m: 1$ covering map, and the m branches come together at z_{0}. If $m>1$, we say that z_{0} is a branch point, and that m is the branching order. The prototypical example that one should keep in mind is $f(z)=z^{m}$. Then in any small neighbourhood of $z=0$ (excluding at zero), then function is $m: 1$. Namely, for any $w \neq 0$, then if $w=r e^{i \theta}, f\left(r^{1 / m} \zeta_{m}^{k} e^{i \theta / m}\right)=w$ for $k=0,1, \cdots, m-1$, where $\zeta_{m}=e^{2 \pi i / m}$ is the primitive $m^{\text {th }}$ root of unity.

Corollary 0.1 (Open mapping theorem). Let U be and open set, and f : $U \rightarrow \mathbb{C}$ be any non-constant holomorphic function. Then $f(U)$ is an open subset of \mathbb{C}.

Proof. Let $w_{0} \in f(U)$. Then there exists a $z_{0} \in U$ such that $f\left(z_{0}\right)=w_{0}$. By the above theorem, there exists a $\varepsilon>0$ and $\delta>0$ such that $D_{\varepsilon}\left(z_{0}\right) \subset U$ and $f(z)=w$ has at least one solution in $D_{\varepsilon}(z)$ for each $w \in D_{\delta}\left(w_{0}\right)$. In particular, $D_{\delta}\left(w_{0}\right) \subset U$, and since w_{0} was arbitrary, $f(U)$ is open.
Remark 0.2. This is of course not true in the real setting, even for polynomials, much less real analytic functions. For instance, consider $f(x)=x^{2}$ on $(-1,1)$. Then $f((-1,1))=[0,1)$ which is not open.

Given two open sets U and V, we say that $f: U \rightarrow V$ is a biholomorphism if f is bijective, holomorphic, and it's inverse $f^{-1}: V \rightarrow U$ is also holomorphic.

Corollary 0.2 (Inverse function theorem). Let $f \in \mathcal{O}(\Omega)$, and $z_{0} \in \Omega$ such that $f^{\prime}\left(z_{0}\right) \neq 0$, and put $w_{0}=f\left(z_{0}\right)$. Then there exist $\varepsilon, \delta>0$ such that for every $w \in D_{\delta}\left(w_{0}\right)$ there exists a unique $z_{w} \in D_{\varepsilon}\left(z_{0}\right)$ such that $f\left(z_{w}\right)=w$. Moreover we have the following explicit formula for z_{w} :

$$
\begin{equation*}
z_{w}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} z \frac{f^{\prime}(z)}{f(z)-w} d z \tag{0.1}
\end{equation*}
$$

where $\left|z_{w}-z_{0}\right|<r<\varepsilon$. In particular, if we set $U=f^{-1}\left(D_{\delta}\left(w_{0}\right)\right) \cap$ $D_{\varepsilon}\left(z_{0}\right)$, then $f: U \rightarrow D_{\delta}\left(w_{0}\right)$ is a biholomorphism with $f^{-1}(w)=z_{w}$ and $\left(f^{-1}\right)^{\prime}(w)=1 / f^{\prime}\left(z_{w}\right)$.
Proof. Since $f^{\prime}\left(z_{0}\right) \neq 0$, the multiplicity of $f(z)=w_{0}$ is exactly one at $z=z_{0}$. By Theorem 1, there exists $\varepsilon, \delta>0$ such that for all $w \in D_{\delta}\left(w_{0}\right)$, there is a unique z_{w} such that $f\left(z_{w}\right)=w$ in the disc $D_{\varepsilon}\left(z_{0}\right)$. Also note that $f^{\prime}(z) \neq 0$ for all $z \in D_{\varepsilon}\left(z_{0}\right)$. locally To prove the formula for z_{w}, we use the residue theorem. Consider the function

$$
H_{w}(z)=\frac{z f^{\prime}(z)}{f(z)-w}
$$

Then since $f(z)=w$ has a unique solution in $\left|z-z_{0}\right|<\varepsilon, H_{w}(z)$ has a pole exactly order one at $z=z_{w}$, and is holomorphic everywhere else. Also note that $f^{\prime}\left(z_{w}\right) \neq 0$. This follows since $f(z)-w$ has a zero of multiplicity one at z_{w}. We then compute the residue

$$
\begin{aligned}
\operatorname{Res}_{z=z_{w}} H_{w}(z) & =\lim _{z \rightarrow z_{w}}\left(z-z_{w}\right) \frac{z f^{\prime}(z)}{f(z)-w} \\
& =z_{w} f^{\prime}\left(z_{w}\right) \lim _{z \rightarrow z_{w}} \frac{z-z_{w}}{f(z)-f\left(z_{w}\right)}=z_{w} .
\end{aligned}
$$

Then (0.1) is proved by an application of the residue theorem. In particular, as in the statement of the theorem, if we set $U=f^{-1}\left(D_{\delta}\left(w_{0}\right)\right) \cap D_{\varepsilon}\left(z_{0}\right)$, then $f: U \rightarrow D_{\delta}\left(w_{0}\right)$ is an injective function with a well defined inverse
function $f^{-1}: D_{\delta}\left(w_{0}\right) \rightarrow U$. By the open mapping theorem this inverse function is continuous. In fact since in the formula for f^{-1}, the integrand depends holomorphically on w, an argument similar to the proof of the CIF for derivative, shows that f^{-1} is holomorphic. By the chain rule then $\left(f^{-1}\right)^{\prime}(w)=1 / f^{\prime}\left(z_{w}\right)$.

Remark 0.3. Another proof can be obtained by using the inverse function theorem from multivariable calculus. Recall that if $J_{f}\left(z_{0}\right)$ is the Jacobian (determinant) of f when thought of as a map from subset of \mathbb{R}^{2} to \mathbb{R}^{2}, then $J_{f}\left(z_{0}\right)=\left|f^{\prime}\left(z_{0}\right)\right|^{2} \neq 0$. Hence from the inverse function theorem in calculus, there exists a local inverse f^{-1} on an open neighbourhood V of w_{0} with continuous partial derivatives. Possibly by shrinking V one can assume that that $f^{\prime}(z) \neq 0$ on U. All one needs to do is to show that $f^{-1}: V \rightarrow U$ is holomorphic. It is enough to prove that f^{-1} satisfies $C R$ equations. By chain rule,

$$
0=\frac{\partial}{\partial \bar{w}} f \circ f^{-1}=\frac{\partial f}{\partial z} \frac{\partial f^{-1}}{\partial \bar{w}}+\frac{\partial f}{\partial \bar{z}} \frac{\partial \overline{f^{-1}}}{\partial \bar{w}}=f^{\prime}(z) \frac{\partial f^{-1}}{\partial \bar{w}},
$$

since f is holomorphic. But then since $f^{\prime}(z) \neq 0$, we see that $\partial f^{-1} / \partial \bar{w}=0$ at each point.

An elementary but important consequence of the proof is the following.
Corollary 0.3. A holomorphic function is locally injective on an open set U if and only if for all $z \in U, f^{\prime}(z) \neq 0$.
Proof. Suppose $f^{\prime}(z)$ is never zero, then the inverse function theorem implies that the function is locally injective. Conversely, suppose the function is injective on some $D_{r}\left(z_{0}\right)$, but $f^{\prime}\left(z_{0}\right)=0$. Then by Theorem 1 there exists a $\delta>0$, and $w \in D_{\delta}\left(f\left(z_{0}\right)\right)$ such that $f(z)=w$ has at least two distinct solutions in $D_{r}\left(z_{0}\right)$ contradicting injectivity.

Once again, the counterpart in real variable theory is false, as can be seen by considering the function $f(x)=x^{3}$. This is globablly (and hence locally) injective, but $f^{\prime}(0)=0$.

The maximum modulus principle

The next theorem says that for non-constant holomorphic functions $f(z)$, $|f|$ cannot have local maximums.

Theorem 2 (Max modulus principle). Let Ω be connected and $f \in \mathcal{O}(\Omega)$. If there exists a $z_{0} \in \Omega$ and a neighbourhood U such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all $z \in U$, then $f(z)$ is a constant.

Proof. By assumption $\left|f\left(z_{0}\right)\right|=\sup _{z \in U}|f(z)|$. If $f(z)$ is non-constant on U, then by the open mapping theorem $f(U)$ is an open set. In particular, there exists a $\delta>0$ such that for any $w \in D_{\delta}\left(f\left(z_{0}\right)\right)$, there exists $z \in U$ such that $f(z)=w$. Now simply pick w_{1} such that $\left|w_{1}\right|>\left|f\left(z_{0}\right)\right|$. Then there exists
a $z_{1} \in U$ such that $\left|f\left(z_{0}\right)\right|<\left|f\left(z_{1}\right)\right|$ which is a contradiction. Hence $f(z)$ must be a constant on U. But then by analytic continuation, $f(z)$ must be a constant on all of Ω.

As a consequence we have the following estimate.
Corollary 0.4. Let Ω be a bounded set and $f \in \mathcal{O}(\Omega)$ such that f extends continuously to the boundary $\partial \Omega$. Then

$$
\sup _{z \in \Omega}|f(z)| \leq \sup _{z \in \partial \Omega}|f(z)|
$$

Proof. It is enough to assume that Ω is connected (or else one could work with each connected component). Since $\bar{\Omega}$ is compact, there exists a $z_{0} \in \bar{\Omega}$ such that $\left|f\left(z_{0}\right)\right|=\sup _{z \in \bar{\Omega}}|f(z)|$. If $z_{0} \in \partial \Omega$, there is nothing to prove. If not, then by the above theorem, z_{0} is an interior local maximum for $|f|$ and hence $f(z)$ must be a constant. But in that case the above inequality is trivial.

Note that a minimum principle does not hold, as can be seen easily by considering the function $f(z)=z$ on any neighbourhood of the origin. It turns out that this is only way in which a minimum principle can fail. Recall that $\mathcal{O}^{*}(\Omega)$ stands for holomorphic functions that are nowhere vanishing on Ω.

Corollary 0.5 (Minimum principle). Let Ω be connected and $f \in \mathcal{O}^{*}(\Omega)$. If there exists a $z_{0} \in \Omega$ and a neighbourhood U such that $|f(z)| \geq\left|f\left(z_{0}\right)\right|$ for all $z \in U$, then $f(z)$ is a constant.

Proof. Simply apply the maximum modulus principle to the holomorphic function $g(z)=1 / f(z)$.
Remark 0.4. A function u is said to be subharmonic if $\Delta u \geq 0$ and superharmonic if $\Delta u \leq 0$. It is a general fact that subharmonic functions satisfy a maximum principle while super harmonic functions satisfy a minimum principle. In particular, harmonic functions satisfy both a minimum and a maximum principle. If $f(z)$ is holomorphic, we can compute that

$$
\Delta|f|^{2}=\frac{1}{4} \frac{\partial^{2}}{\partial z \partial \bar{z}}|f(z)|^{2}=\frac{1}{4} \frac{\partial}{\partial z} f(z) \overline{f^{\prime}(z)}=\left|f^{\prime}(z)\right|^{2} \geq 0
$$

Hence $|f(z)|^{2}$ is subharmonic, and must satisfy a maximum principle. Hence $|f(z)|$ satisfies a maximum principle. On the other hand if $|f(z)|$ is nowhere vanishing, then $\log |f(z)|^{2}$ is smooth function, and in fact is harmonic as can be seen from the following computation

$$
\Delta \log |f|^{2}=\frac{1}{4} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log |f(z)|^{2}=\frac{1}{4} \frac{\partial^{2}}{\partial z \partial \bar{z}}(\log f(z)+\log \overline{f(z)})=0
$$

Note that since $f(z)$ is no-where vanishing at least locally near z one can define a holomorphic branch of \log. The upshot is that $\log |f(z)|^{2}$ must satisfy a minimum principle, and hence must $|f(z)|$ (since \log is increasing).

Rouche's theorem

Theorem 3. Let γ be a simple closed curve in Ω and $f, g \in \mathcal{O}(\Omega)$ such that for all $z \in \operatorname{Supp}(\gamma)$,

$$
|f(z)-g(z)|<|g(z)| .
$$

Then $f(z)$ and $g(z)$ have the same number of zeroes in Int (γ).
Proof. Firstly, note that $f(z)$ and $g(z)$ have no zero on γ (the strictness of the inequality above is crucial precisely for this purpose). Moreover, for all $z \in \operatorname{Supp}(\gamma)$, we have

$$
\left|\frac{f(z)}{g(z)}-1\right|<1
$$

Put $F(z)=f(z) / g(z)$. Then $F(z) \in \mathcal{M}(\Omega)$. Moreover, at the points where $f(z)$ and $g(z)$ are non-zero (in particular on $\operatorname{Supp}(\gamma)$), one can easily see that

$$
\frac{F^{\prime}(z)}{F(z)}=\frac{f^{\prime}(z)}{f(z)}-\frac{g^{\prime}(z)}{g(z)}
$$

A quick way to see this is that in the nieghbourhood of such points, $\log F(z)$ is well defined and holomorphic, and moreover, $\log F(z)=\log f(z)-\log g(z)$. Now consider $\Gamma:=F \circ \gamma$, then Γ is a close curve in $D_{1}(1)$. Since $D_{1}(1)$ is simply connected, and $0 \notin D_{1}(1), n(\Gamma, 0)=0$. By the argument principle,

$$
0=n(\Gamma, 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{F^{\prime}(z)}{F(z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z-\frac{1}{2 \pi i} \int_{\gamma} \frac{g^{\prime}(z)}{g(z)} d z
$$

Once again by argument principle, we see that $f(z)$ and $g(z)$ must have the same number of zeroes in $\operatorname{Int}(\gamma)$.

Typically, as can be seen in the example below, the theorem is applied to count the number of zeroes of $f(z)$. The heart of the matter is to come up with a suitable $g(z)$, whose zeroes can be counted easily, and such that the above (strict) inequality can be satisfied.

Example 0.1. Consider the polynomial $p(z)=z^{4}-6 z+3$. We claim that all it's roots are contained in the disc $D_{2}(0)$, and three of them are contained in the annulus $A_{1,2}(0)$. We divide the proof into the following two cases.

- The disc $|z|<2$. On the circle $|z|=2$ we have the following estimate

$$
\begin{aligned}
\left|p(z)-z^{4}\right| & =|6 z-3| \\
& \leq 6|z|+3=12+3=15<|z|^{4} .
\end{aligned}
$$

By Rouche's theorem, $p(z)$ has the same number of roots as z^{4} in $|z|<2$, and hence has four roots in that disc. But $p(z)$ is also a polynomial of degree four, and hence these four roots must include all the possible roots of $p(z)$.

- The disc $|z|<1+\varepsilon$ for $\varepsilon \ll 1$. Lets take $\varepsilon<1 / 10$. On the circle $|z|=1+\varepsilon$ we have the following estimate

$$
\begin{aligned}
|p(z)-(-6 z)| & =\left|z^{4}+3\right| \\
& \leq|z|^{4}+3=(1+\varepsilon)^{4}+3<4.5<6(1+\varepsilon)=|-6 z| .
\end{aligned}
$$

Once again by Rouche's theorem, $p(z)$ has exactly one root in $|z|<$ $1+\varepsilon$, and hence has exactly three roots in $1+\varepsilon \leq|z|<2$. Since this is true for all $\varepsilon \ll 1$, in particular, it has exactly three roots in $A_{1,2}(0)$.

Remark 0.5. Rouche's theorem can be used to give another proof of the fundamental theorem of algebra. Let $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a general degree n polynomial (so $a_{n} \neq 0$). It is easy to see that for $R \gg 1$, if $|z|=R$, then

$$
\left|p(z)-a_{n} z^{n}\right|<\left|a_{n}\right|\left|z^{n}\right| .
$$

This is essentially because $p(z)-a_{n} z^{n}$ is a polynomial of a strictly lower degree. Now by Rouche's theorem $p(z)$ and $a_{n} z^{n}$ have the same number of roots on $|z|<R$. In particular, $p(z)$ must have exactly n roots on $|z|<R$. In fact it can be shown easily (by induction for instance) that it cannot have any further zeroes.

Appendix: details left out in the proof of Corollary 0.2

To spell out the details on the holomorphicity of f^{-1} and that the derivative is $1 / f^{\prime}\left(z_{w}\right)$, we first note that

$$
\begin{aligned}
\frac{f^{-1}(w+h)-f^{-1}(w)}{h} & =\frac{1}{2 \pi i h} \int_{\left|z-z_{0}\right|=r} z f^{\prime}(z)\left(\frac{1}{f(z)-w-h}-\frac{1}{f(z)-w}\right) d z \\
& =\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{z f^{\prime}(z)}{(f(z)-w-h)(f(z)-w)} d z
\end{aligned}
$$

Now the integrand is continuous and bounded for $|h| \ll 1$, and hence we can take compute the limit by swapping the integral and the limit. That is,

$$
\lim _{h \rightarrow 0} \frac{f^{-1}(w+h)-f^{-1}(w)}{h}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{z f^{\prime}(z)}{(f(z)-w)^{2}} d z .
$$

Another application of the residue theorem shows that the second integral is precisely $1 / f^{\prime}\left(z_{w}\right)$. To see this, we observe that

$$
\frac{z f^{\prime}(z)}{(f(z)-w)^{2}}=\frac{\left(z-z_{w}\right) f^{\prime}(z)}{(f(z)-w)^{2}}+z_{w} \frac{f^{\prime}(z)}{(f(z)-w)^{2}} .
$$

From the geometric series expansion, one can see that the second term is of the form

$$
z_{w} \frac{f^{\prime}(z)}{(f(z)-w)^{2}}=\frac{z_{w}}{f^{\prime}\left(z_{w}\right)^{2}}\left(z-z_{w}\right)^{-2}+g(z),
$$

where $g(z)$ is holomorphic near z_{w}. This relies on the fact that $f^{\prime}\left(z_{w}\right) \neq$ 0 , and hence the numerator has a non-zero constant term in it's Taylor
expansion. The upshot is that the second term does not contribute to the residue. The advantage now is that the first term has a simple pole at $z=z_{w}$, and hence we can compute the residue as

$$
\operatorname{Res}_{z=z_{w}} \frac{z f^{\prime}(z)}{(f(z)-w)^{2}}=\lim _{z \rightarrow z_{w}} \frac{\left(z-z_{w}\right)^{2} f^{\prime}(z)}{(f(z)-w)^{2}}=\frac{1}{f^{\prime}\left(z_{w}\right)} .
$$

* Department of Mathematics, Indian Institute of Science

Email address: vvdatar@iisc.ac.in

