
LECTURE-1 : THE COMPLEX NUMBERS

VED V. DATAR∗

1. Roadmap for the course

Complex analysis is one of the most beautiful branches of mathematics;
a subject that lies at the heart of several other subjects, such as topology,
algebraic geometry, differential geometry, harmonic analysis, and number
theory.

The main objects in calculus are real valued functions defined on intervals.
The starting point in complex analysis is to extend the notion of functions
to include complex valued functions

f : Ω→ C

defined on subsets Ω ⊂ C of complex numbers. Recall that complex numbers
can be added, subtracted, multiplied and divided (if non-zero) just like real
numbers. Every complex number can be written in the form

z = x+ iy

where x and y are real numbers. So complex numbers can be identified as
a set with Euclidean plane R2. The addition of complex numbers is also
equivalent to addition of vectors in R2. So it might appear as if we are not
adding much, and that nothing is lost by simply treating the complex valued
function as a two variable vector field. In fact this is true, as we will see
later, when talking about limits and continuity.

But there is one key difference between R2 and C, that of multiplication
and division. Indeed things change dramatically when we restrict our at-
tention to complex differentiable or holomorphic functions, that is, functions
for which

lim
h→0

f(z + h)− f(z)

h

exists and is finite. The important point being that h could be a com-
plex number. Formally this definition is identical to that of a differentiable
function in one-variable calculus. But quite surprisingly the mere change of
perspective, the fact that h is allowed to take complex values as it goes to
zero, produces beautiful new phenomenon that have no counterparts in one-
variable calculus, or indeed even multivariable calculus. We now summarize
some of these remarkable consequences of holomorphicity.

Date: 24 August 2016.

1



• Analyticity. As we remarked above, complex valued functions can
be thought as mapping between sets in R2. We will prove later in
the course that for a holomorphic function, partial derivatives of
all orders exist. And moreover, one also has that the Taylor series
at ever point converges to the function value, that is holomorphic
functions are analytic. Recall that this is not true for one-variable
functions. For instance if

f(x) =

{
e−1/x

2
, x > 0

0, x ≤ 0,

then it is easy to see that at x = 0, derivative of any order is zero.
So the Taylor series of the function at x = 0 is zero, but the function
is clearly not zero.
• Analytic continuation. Two holomorphic functions defined on an

open connected domain are equal in a small open neighbourhood
of a point, no matter how small the neighbourhood is, have to be
identically equal.
• Good convergence properties. If a sequence of holomorphic

functions converges uniformly, the limit function is again holomor-
phic. This is not true for differentiable one-variable functions. For
instance, if fn : [−1, 1]→ R is defined by

fn(x) =

√
1

n
+ x2,

then one can show that fn → |x| uniformly, but |x| is not differen-
tiable.
• Liouville property. A bounded holomorphic function defined on

all of C is forced to be a constant. As a consequence, one can prove
the fundamental theorem of algebra.

Part of the richness of the theory of holomorphic functions comes from
the variety in the methods used to study the subject. We next summarize
the approaches that we will touch upon in this course.

• Partial differential equations. It turns out that real and imagi-
nary parts of holomorphic functions, thought of as real valued two-
variable functions, satisfy a system of first-order partial differential
functions, called the Cauchy-Riemann equations. As a consequence
of this, the real and imaginary parts are harmonic functions. The
theory of harmonic functions is rather well developed, and could be
potentially exploited to study holomorphic functions. We will only
touch upon the Cauchy-Riemann equations, but will not pursue this
approach further. We will instead focus on integral methods.
• Integral methods. The viewpoint that we will adopt is centered

on a remarkable formula called the Cauchy’s integral formula. We
will develop a notion of integration of complex valued functions
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along curves, a generalization of the notion of line integrals in multi-
variable calculus. The fundamental fact, which will be the theoreti-
cal basis for the rest of the course, is that the complex integral of a
holomorphic function around a closed curve is zero. If the real and
imaginary parts of the holomorphic function are assumed to have
continuous partial derivatives, this result follows from Green’s the-
orem. We will give an independent proof, not because we wish to
be clever, but because remarkably this theorem will imply that the
real and imaginary parts of the holomorphic function indeed have
not only continuous partial derivatives but have partial derivatives
of all orders, and are in fact analytic.
• Power series methods. As remarked above, every holomorphic

function is represented by a power series. Since power series are
algebraic objects, for the most part they can also be manipulated
as if they were polynomials. Thus algebraic methods can be used to
study holomorphic functions.
• Geometric mathods. An elementary but beautiful fact is that

holomorphic functions, thought of as mappings (or transformations)
between sets in R2 are conformal maps. That is, holomorphic map-
pings preserve angles between curves, and stretch the distances. We
will study some standard examples of conformal maps. Towards the
end of the course we will prove the following deep fact, first discov-
ered by Riemann - Any domain in the complex plain which does
not have a ‘hole’ and which is not the entire complex plane, can be
mapped conformally to a disc centered at the origin of radius one.
Our proof will be due to Koebe.

2. Complex numbers

It is known that certain polynomial equations with real coefficients need
not have real roots. Complex numbers are obtained from the reals by for-
mally adjoining a number i that solves the equation

i2 = −1.

More formally, we define the set of complex numbers by

C := R[i] = R[x]/(1 + x2).

So a general complex number takes the form z = x + iy, where x and y
are real numbers, and are called the real and imaginary part of z respec-
tively. We use the notations x = Re(z) and y = Im(z). Clearly the real
numbers can be identified as a subset of the complex numbers in a natural
way as numbers with Im(z) = 0. We define addition and subtraction to be
component-wise i.e. if z1 = x1 + iy1 and z2 = x2 + iy2, then we define

z1 ± z2 = (x1 + x2)± i(y1 + y2).
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Using this, we can identify C with R2 as vector spaces. With this inter-
pretation, a complex number represents a point in the xy-plane; with the
x-coordinate given by Re(z) and the y-coordinate given by Im(z). This
more geometric interpretation will be very useful to us.

But the complex numbers are much more than just 2-dimensional vectors.
They also have a multiplicative structure, induced from the multiplicative
structure of R[x]. That is we can multiply two complex numbers to obtain
another complex number. Indeed, if z1 and z2 are as above, we define

z1 · z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

More simply, we define i2 = −1, and then extend the product to satisfy the
distributive property. It is not hard to verify that addition and multiplica-
tion satisfy the following properties:

P1 (Additive and Multiplicative identity.) For any complex number z,

z + 0 = z, z · 1 = z.

P2 (Commutativity.) For any z1, z2 ∈ C,

z1 + z2 = z2 + z1, z1 · z2 = z2 · z1.

P3 (Associativity.) For any complex numbers z1, z2, z3,

(z1 + z2) + z3 = z1 + (z2 + z3), (z1 · z2) · z3 = z1 · (z2 · z3).

P4 (Distribution) For any z1, z2, z3 ∈ C,

z1 · (z2 + z3) = z1 · z2 + z1 · z3.

P5 (Additive inverse.) For any z ∈ C, −z = (−1) · z satisfies

z + (−z) = 0.

For notational convenience, we sometimes drop the dot when multiplying
complex numbers. As remarked above, geometrically, addition of complex
numbers corresponds to addition of vectors. What is the interpretation for
multiplication? This is clearer if we use polar coordinates. Recall that any
point (x, y) in the plane that is not the origin, can be represented uniquely
by a pair (r, θ), where r > 0 and θ ∈ (−π, π] via the following transformation
law:

x = r cos θ, y = r sin θ.

Then r is the geometric distance from the origin, and θ is the angle made
by the line joining (x, y) to the origin with the positive x-axis. For instance
the complex number i corresponds to (1, π/2) in polar coordinates. So, any
complex number can be represented as

z = r(cos θ + i sin θ).
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If w = ρ(cosα+ i sinα) is another complex number, then it follows from the
definition of the multiplication formula that

zw = rρ[(cos θ cosα− sin θ sinα) + i(cos θ sinα+ sin θ cosα)]

= rρ(cos(θ + α) + i sin(θ + α)),

where we used the sum-angle formulas in the last equation. So geometrically
multiplication simply corresponds to a dilation (i.e. scaling) and a rotation.
For instance multiplication by i corresponds to rotating the vector repre-
senting the complex number by π/2. To form a good number system we will
also need to be be able to divide by complex numbers. For any z2 6= 0, we
say that w = z1/z2 if z1 = wz2. We call w, the quotient obtained by dividing
z1 by z2. Clearly, if z2 = 0, then by property P1, the quotient cannot be well
defined. We next see that the quotient is in fact well defined when dividing
by non-zero complex numbers.

Conjugate, Absolute value, Argument. To prove that a quotient al-
ways exists on dividing by a non-zero complex number, it is enough to have
a formula for 1/z, where z 6= 0. Let z = x+ iy. Multiplying the numerator
and denominator of 1/z by x− iy (this is similar to rationalizing irrational
denominators) we obtain

1

z
=

1

x+ iy
=

x− iy
(x+ iy)(x− iy)

=
x− iy
x2 + y2

.

Note that in the last equation, the denominator is now a real number, and
we already know how to divide by real non-zero numbers. The numerator,
is called the conjugate of z and is denoted by

z̄ = x− iy.
Geometrically this amounts to reflection of the point representing z about
the x-axis. Readers will notice that the denominator is the square of the
distance of the point (x, y) from the origin. So we define the absolute value
or the length of the complex number, denote by |z| as

|z| =
√
x2 + y2.

This is of course the ‘r’ in the polar coordinate representation. Some basic
properties of these operations are the following.

• z = z.
• |z| = |z|.
• |z| = 0 =⇒ z = 0.
• zw = z̄w̄, |zw| = |z||w|.
• z + w = z̄ + w̄.

Note that contrary to the conjugate function, the modulus function is not
additive. Instead we have an inequality; see Theorem 2.1. With these
notations in place, we can re-write the above statement as

1

z
=

z̄

|z|2
,
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for any z 6= 0. So we in summary we shown that multiplication has another
property, that every no-zero number has multiplicative inverse. That is we
have

P6 (multiplicative inverse.) For every z ∈ C, z 6= 0 there exists a
complex number 1/z = z̄/|z|2 such that

z · 1

z
= 1.

With the two operations of addition and multiplication satisfying these
six axioms, the set of complex numbers become what is called as field by
algebraists. In fact, the complex numbers form an algebraically closed field,
which means that any polynomial with complex coefficients can be com-
pletely factorized using complex roots. Later in the course, somewhat re-
markably, we will prove this statement in algebra using our complex analysis
techniques. We will in fact give multiple proofs, not just one!

The ‘θ’ in the polar coordinates also has a name, and is called the argu-
ment of z, and denote by arg(z). Using the new notation, it is also easy to
see that

Re(z) =
z + z̄

2
, Im(z) =

z − z̄
2i

.

We can now define division by

z

w
=

zw̄

|w|2
.

Integer Powers. Given any natural number n ∈ N, we define zn to be z
multiplied to itself ‘n’ times. We also define z0 := 1. For negative integers
−n, we then define z−n to be 1/zn or the multiplicative inverse to zn.

We end with an important inequality that will be crucial in most of the
estimates.

Theorem 2.1 (Triangle inequality). Let z, w ∈ C. Then we have the fol-
lowing inequalities

(1)

|z + w| ≤ |z|+ |w|,
with equality if and only if z = aw where a ∈ R i.e. z and w lie on
the same line through the origin.

(2)

|z − w| ≥ ||w| − |z||,
with equality again if z and w lie on the same line through the origin.

Proof. To see the first inequality, consider a triangle whose vertices are the
origin O, the point represented by z, which we call A and the point rep-
resented by z + w which we label B. Then by triangle inequality from
elementary geometry, every side is smaller that the sum of the other two
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sides with equality only if all three points lie on the same line. So if they
dont lie on the same line, we have

|OB| < |OA|+ |AB|.
The proof is completed by noticing that |OA| = |z + w|, |OA| = |z| and
|AB| = |w|. For the second inequality, without loss of generality, suppose
|w| ≥ |z|. Then the right hand side is |w| − |z|. So applying the first
inequality, since w = (w − z) + z,

|w| ≤ |w − z|+ |z|,
from which the desired inequality follows with equality if and only if w − z
and z lie on the same straight line. But then this happens if and only if z
and w themselves lie on the same line through the origin. �
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