
LECTURE-2

VED V. DATAR∗

1. Topology of the complex plane

A consequence of the triangle inequality discussed in the previous lecture
is that the function

d(z, w) := |z − w|
defines a distance function on C, and for simplicity, we denote the corre-
sponding metric space by (C, | · |). Given a z0 ∈ C, the open disc of radius
R around z0 is given by

DR(z0) = {z ∈ C | |z − z0| < R}.
We now review a few standard definitions from topology. The complement
of a set S, denoted by Sc is the set of all complex numbers NOT in S. Given
any set S ⊂ C, a point p ∈ C is a limit or an accumulation point if for any
r > 0, the disc Dr(p) has at least one point in common with S other than
possibly p itself. A point p ∈ S is said to be isolated if p is not a limit point
of S. The closure of a set S, denoted by S̄ is the union of S with all it’s
accumulation points. The interior of S, denoted by S̊, is the set of all points
p ∈ S such that Dr(p) ⊂ S for some r > 0. The boundary of a set S is the
set of points p ∈ C such that for all r > 0, the disc Dr(p) contains at least
one point from S and Sc. For instance the boundary of the open disc Dr(p)
is the circle of radius r centered at p.

A set S is called open is for any point p ∈ S, there exists a disc Dr(p) ⊂ S.
That is each point has a neighborhood that is completely contained in the
set. A set is called closed is it’s complement is open. An equivalent definition
(why are they equivalent?) is that a set is closed if and only if it completely

contains it’s boundary. So for any set S, the interior S̊ is the largest open
set contained in S and the closure S̄ is the smallest closed set containing S.
A basic property of open and closed sets is the following.

Proposition 1.1. • Arbitrary union (possibly infinite) of open sets is
again open. Finite intersection of open sets is open.
• Arbitrary intersection of closed sets is close. Finite union of closed

sets is closed.

Given a sequence {zn} we say that it converges to p ∈ C if for all ε > 0,
there exists an N such that

|zn − p| < ε.
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Proposition 1.2. zn → p if and only if Re(zn) → Re(p) and Im(zn) →
Im(p).

This is a consequence of the fact that for any z ∈ C,

max(|Re(z)|, |Im(z)|) ≤ |z| ≤
√

2 max(|Re(z)|, |Im(z)|).
A disadvantage of the above definition of convergence is that one needs

to know the limit a priori, to even decide if a sequence is converging. A
convenient alternative is of course the notion of a Cauchy sequence. Recall
that a sequence zn is said to be Cauchy if for all ε > 0, there exists an N > 0
such that for all n,m > N we have

|zn − zm| < ε.

It is easy to see (prove it!) that every convergent sequence is Cauchy. Con-
versely, we have the following fundamental fact.

Theorem 1.1. Every Cauchy sequence in C converges. That is, (C, | · |) is
a complete metric space.

. The theorem follows from the proposition above and the fact that real
numbers from a complete metric space. Recall that a set is called compact
if every open cover has a finite sub-cover. A consequence of completeness is
the following useful characterization of compact sets in C.

Theorem 1.2. The following are equivalent for a subset K ⊂ C.

(1) K is compact.
(2) K is closed and bounded.
(3) K is sequentially compact. That is, any infinite sequence {zn} ⊂ K

has an accumulation point p ∈ K.

The last notion we need is that of a connected set. A subset S ⊂ C is
called connected, if

S = (U ∩ S) ∪ (V ∩ S)

for some disjoint open sets U and V . If S itself is open, this reduces to
saying that S cannot be written as the union of two disjoint open sets. An
open, connected subset is called a region. We have the following elementary
characterization of regions.

2. Functions on the complex plane

Let S ⊂ C be a subset. A function f : S → C is a rule that assigns unique
complex number, denoted by f(z) to every number z ∈ S. The set S is
called the domain of the function, and

f(S) := {f(z) | z ∈ S},
is called the range. The pre-image of a set T ⊂ C, denoted by f−1(T ) is the
subset of S defined by

f−1(T ) = {z ∈ S | f(z) ∈ T}.
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A function is called injective or one-one if the pre-image of every point in
the range consists of exactly one point, i.e

f(z) = f(w) =⇒ z = w.

It is said to surjective or onto if the range is all of C.
We say that the limit of f(z) as z tends towards p is L, and denote it by

lim
z→p

f(z) = L,

if the following holds - For any ε > 0, there exists a δ > 0 such that

|z − p| < δ, z ∈ S, =⇒ |f(z)− L| < ε.

We say that f is continuous at p ∈ S if

lim
z→p

f(z) = f(p).

f is simply called continuous if it is continuous at all points in its domain.
We then have the basic fact.

Theorem 2.1. f : S → C is continuous if and only if Re(f) and Im(f) a
continuous as real valued functions of two variables.

So as far as topology, which is the study of continuous functions, is con-
cerned, there is no difference between C and R2. With this remark, the
following properties follow easily from what is already known about multi-
variable functions.

Theorem 2.2. Consider a function f : Ω→ C, where Ω is open.
(1) It is continuous if and only if f−1(U) is open for any open set U ⊂ C.
(2) It is continuous if and only if f−1(K) is closed for every closed set

K ⊂ C.
(3) It is continuous at p ∈ Ω if and only if for any sequence {zn} such

that zn → p, we have

lim
zn→p

f(zn) = f(p).

(4) If f is continuous, then for any compact subset K ⊂ Ω, f(K) is
compact.

(5) If f and g : Ω→ C are continuous at p then so are f ± g and fg. If
g(p) 6= 0, then f/g is also continuous at p.

(6) if f is continuous at p, and g : f(Ω)→ C is continuous at f(p), then
the composition g ◦ f is also continuous at p.

Example 2.1. The function f(z) = zn, where n is an integer, is continuous.
To see this, note that

zn − pn = (z − p)(zn−1 + zn−2p · · ·+ pn−1)

A polynomial is a function p : C→ C of the form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,
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where ak ∈ C for k = 0, 1, · · · , n. Then by the fact that sums of contiuous
functions are continuous, it follows that polynomials are continuous at all
points. A rational function is a quotient of two polynomials

R(z) =
p(z)

q(z)
,

wherever q is non-zero. At all such points, by the quotient rule above, a
rational function is also continuous.

Example 2.2. The function f(z) = z̄ is continuous. Similarly, the function
g(z) = |z| is also continuous.

Example 2.3. Arg(z) in not continuous. Recall that if z = x+ iy, then
arg(z) is defined as the unique angle between (−π, π] that the line joining
the origin to (x, y) makes with the positive x-axis. Now consider any point
on the the negative x-axis, say z = −1.

2.1. Curves in C. As a special case, we could take S to be an interval
in R thought of as a subset of the x-axis in C. A path is defined to be a
continuous function γ : I → R, where I is an interval. We then have the
following useful characterization of regions in C.

Proposition 2.1. Let Ω ⊂ C be an open subset. Then Ω ⊂ C is a region
if and only if Ω is path connected, ie. for any z0, z1 ∈ Ω, there exists a
continuous map γ : [0, 1]→ Ω such that γ(0) = z0 and γ(1) = z1.

Proof. Suppose Ω is a region. Fix z0 ∈ Ω, and let

A = {z ∈ Ω | there exists a path in Ω connecting z to z0}.

Note that z0 ∈ A, and hence A is non-empty. Since Ω is open, and clearly
every disc is path connected, A is open. Now we claim that Ac := Ω \ A
is also open. To see this, if Ac is non-empty we have some w ∈ Ac. Then
since Ω is open, there is disc Dr(w) ⊂ Ω. Clearly, Dr(w) ∩ A = Φ, for if,
z1 ∈ Dr(w) ∩ A, then one could simply connect z to z0, by connecting z
to z1, and z1 to z0, contradicting our assumption that w ∈ Ac. This shows
that Dr(w) ⊂ Ac, and hence Ac is open. But since Ω is connected and A
is non-empty, this forces Ac = Φ. Conversely, suppose Ω is path connected,
but is disconnected. Then we can write Ω = A ∪ Ac, where both A and Ac

are open and non-empty. �

2.2. Convergence of functions. There are two notions of convergence,
that of point-wise, and uniform convergence. We say that

• the sequence of functions fn : Ω→ C converges point-wise to f : Ω→
C, if for every z ∈ Ω, the sequence fn(z) → f(z). Or equivalently,
given any ε > 0, and any z ∈ Ω, there exists an N > 0, possibly
depending both on ε and z, such that

n > N =⇒ |fn(z)− f(z)| < ε.
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• the sequence of functions is said to converge uniformly if given any
ε > 0, there exists an N > 0 depending only on ε such that for all
z ∈ Ω and n > N we have that

|fn(z)− f(z)| < ε.

Theorem 2.3. If fn : Ω → C is a sequence of continuous functions which
converge uniformly to f : Ω→ C, then f itself is continuous.

3. Holomorphic functions

Let Ω ⊂ C be an open subset. We say that a function f : Ω → C is
complex differentiable at z = p ∈ Ω, if the limit

f ′(p) =
d

dz

∣∣∣
z=p

f(z) = lim
z→p

f(z)− f(p)

z − p
= lim

h→0

f(a+ h)− f(a)

h
,

exists and is finite. The limit, denoted by f ′(p), is then called the deriva-
tive (or the complex derivative if the context is not clear) of f at p. The
function is called holomorphic, if it is complex differentiable at all points in
the domain. Formally this definition is identical to the one for real valued
functions of one variable. We have also seen that functions of a complex
variable can be thought of as vector fields in two variables. In multivariable
calculus, there is already a notion of derivatives of such functions. A nat-
ural question is to ask for the relation between these two notions. We will
return to this question shortly. But first we collect some basic properties
of holomorphic functions, the proofs of which are identical to those in for
differentiable functions of one real variable.

Theorem 3.1. Let f, g : Ω→ C be differentiable at z, and a, b ∈ C

(1) If f is constant in a neighbourhood of z, then f ′(z) = 0.
(2) (Linearity) af + bg is complex differentiable at z, and

[af + bg]′(z) = af ′(z) + bg′(z)

(3) (Product rule) fg is complex differentiable at z and

(fg)′(z) = f ′(z)g(z) + f(z)g′(z)

(4) (Quotient rule) If g′(z) 6= 0, then f/g is complex differentiable at z
and (f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g2(z)
.

(5) (Chain rule) If h is complex differentiable at f(z), then h ◦ f is
complex differentiable at z and

[h ◦ f ]′(z) = h′(f(z)) · f ′(z).

The main theme of the course is that holomorphicity imposes severe re-
strictions on the functions under consideration. Just to get our feet wet, we
start with the following elementary observation.
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Proposition 3.1. If a function f is complex differentiable at z = a then it
is automatically continuous at z = a.

Proof. We proceed by contradiction. So suppose f is not continuous at a.
Then there exists an ε > 0 and a sequence zn → a such that |f(zn)−f(a)| >
ε. By holomorphicity, there exists an N such that∣∣∣f(zn)− f(a)

zn − a
− f ′(a)

∣∣∣ < 1,

whenever n > N . Or equivalently, that

|f(zn)− f(a)− (zn − a)f ′(a)| < |zn − a|.
By the triangle inequality

ε < |f(zn)− f(a)| = |f(zn)− f(a)− (zn − a)f ′(a) + (zn − a)f ′(a)|
< |f(zn)− f(a)− (zn − a)f ′(a)|+ |(zn − a)f ′(a)|
< |zn − a|(1 + |f ′(a)|)

Suppose now N is chosen large enough so that

|zn − a| <
ε

2(1 + |f ′(a)|)
,

then the above chain of inequality yields

ε < |f(zn)− f(a)| < ε

2
,

which is absurd. �

Example 3.1. As a first example, we compute the derivative of f(z) = zn,
where n is an integer. We first assume that n ≥ 1. Then it is easy to see
(try to prove it!) that

zn − an = (z − a)(zn−1 + zn−2a+ · · ·+ zan−2 + an−1).

So then

f ′(a) = lim
z→a

zn − an

z − a
= lim

z→a
zn−1 + zn−2a+ · · ·+ zan−2 + an−1 = nan−1.

For negative integers n we can apply quotient rule to again obtain the same
formula. So for integers n we have that

d

dz

∣∣∣
z=a

zn = nan−1

Example 3.2. Polynomials and Rational functions. Recall that poly-
nomials are functions of the type

p(z) = anz
n + an−1z

n−1 + · · ·+ a0.

Then by the above theorem, such functions are holomorphic. Moreover, by
the above calculation the derivative of a degree n polynomial is again a poly-
nomial, but of degree n− 1. Recall also that rational functions are quotients
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of two polynomials. By the quotient rule, these are holomorphic at all points
where the denominator does not vanish. That is, if

R(z) =
p(z)

q(z)
,

then R(z) is holomorphic at z = a if and only if q(a) 6= 0.

Example 3.3. The function f(z) = z̄ is not holomorphic. To see this,
consider the difference quotient

f(z + h)− f(z)

h
=
h̄

h
.

Then if h → 0 along the real axis i.e. h ∈ R, this difference quotient is 1.
On the other hand if h → 0 along the imaginary axis, i.e. h = ik where
k ∈ R, then this quotient is always -1. So the limit cannot exist.

Example 3.4. The function f(z) = |z| is not holomorphic. By the product
rule, it is enough to show that g(z) = |z|2 is not holomorphic. The difference
quotient is

|z + h|2 − |z|2

h
=

(z + h)(z + h)− zz̄
h

=
zh̄+ z̄h+ |h|2

h
= z

h̄

h
+ z + h̄.

The limit of the last two terms as h→ 0 is z̄, but, as we saw in the previous
example, the limit of the first term does not exist. So |z|2, and hence |z|, is
not differentiable.
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