
LECTURE-20

VED V. DATAR∗

In this lecture, we’ll systematically study real variables integrals that can
be computed using contour integration.

Type-I: Integrals of rational functions

In this section we study integrals of the form∫ ∞
−∞

R(x) dx,

where R(x) is a rational function.
Assumption. R(x) = P (x)/Q(x) with deg(Q) ≥ deg(P ) + 2 and Q(x) has
no real root. Recall that by definition,∫ ∞

−∞
R(x) dx = lim

R1,R2→∞

∫ R2

−R1

R(x) dx.

By the hypothesis on degree and no real root of Q(x), the integral is abso-
lutely convergent and it follows that in fact,∫ ∞

−∞
R(x) dx = lim

R→∞

∫ R

−R
R(x) dx.

The method. We consider the contour γR consisting of a semi-circle of
radius R centred at the origin and traversed in the anti-clockwise direction.
We can decompose γR = lR + CR, where lR is the interval (−R,R) and CR

is the semi-circular part, and hence∫ R

−R
R(x) dx =

∫
γR

R(z) dz −
∫
CR

R(z) dz.
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If R >> 1, then all roots of Q(x) in the upper half plane lie in the interior
of γR. By the residue theorem,∫

γR

R(z) dz = 2πi
∑

Q(α)=0
Im(α)>0

Resz=αR(z).

On the other hand, since degQ ≥ degP + 2, when R >> 1,

|R(z)| ≤ M

R2

for some M > 0. Hence,∣∣∣ ∫
CR

R(z) dz
∣∣∣ ≤ 2πM

R

R→∞−−−−→ 0.

Putting it all together we have∫ ∞
−∞

R(x) dx = 2πi
∑

Q(α)=0
Im(α)>0

Resz=αR(z).

Example 0.1. Consider the integral∫ ∞
0

x2

1 + x6
dx =

1

2

∫ ∞
−∞

x2

1 + x6
dx = πi

∑
1+α6=0
Im(α)>0

Resz=αR(z),

where R(z) = z2/(1 + z6). The roots of the denominator are given by αk =

eπi/6+2πik/6 for k = 0, 1, · · · , 5. Of these only α0 = eπi/6, α1 = eπi/2 = i and
α3 = e5πi/6 are in the upper half region. Each of these is a simple pole, and
hence we can compute that

Resz=αkR(z) = lim
z→αk

(z−αk)
z2

1 + z6
= α2

k lim
z→αk

z − αk
1 + z6

=
1

6α3
k

=


−i/6, k = 0

i/6, k = 1

−i/6, k = 2.

Finally we get that ∫ ∞
0

x2

1 + x6
dx = πi

(
− i

6

)
=
π

6
.

A variation. One also often encounters integrals (as in the above example)
of the form ∫ ∞

0
R(x) dx.

If R(x) is an even function as in the example above, then one can simply
convert it into an integral on all of R at the cost of an additional factor. But
this trick will not work in general, so one might have to get more creative.
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Example 0.2. Consider the integral

I =

∫ ∞
0

x

1 + x4
dx = lim

R→∞

∫ R

0

x

1 + x4
dx.

As usual, we let IR denote the integral on the right (inside the limit), and
we let f(z) = z/(1 + z4). We take the contour γR = γ1,R +CR + γ2,R, where
γ1,R consists of the straight line from (0.0) to (R, 0), CR is the quadrant of
the circle from (R, 0) to (0, R), and γ2,R is the straight line from (0, R) to
(0, 0). By the residue theorem, since the only pole of f(z) in the interior of

γR is a simple pole at z = eiπ/4, we have∫
γR

f(z) dz = 2πiResz=eiπ/4f(z)

= 2πi lim
z→eiπ/4

(z − eiπ/4)z

1 + z4

=
2πieiπ/4

4e3iπ/4
=
π

2
.

Next, we observe that ∫
γ1,R

f(z) dz = IR,

and by the discussion above,

lim
R→∞

∫
CR

f(z) dz = 0.

To compute the integral over γ2,R we parametrize γ2,R(t) = −it, where t ∈
(−R, 0). Then γ′2,R(t) = −i, and so∫

γ2,R

f(z) dz =

∫ 0

−R

−it
1 + t4

(−idt) = IR.

Hence if R > 1, by the residue computation above,

2IR + CR =
π

2
.

Taking the limit as R→∞ we see that

I =
π

4
.

Remark 0.1. This example was merely for illustration, since the integral
can of course be computed in a more elementary way by a change of variables
x2 = u. The reader can challenge himself/herself with the following:∫ ∞

0

x3

1 + x5
.
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Type-II: Rational functions of sine and cosine

The type 2 integrals are of the following kind:∫ 2π

0
R(cos θ, sinθ) dθ,

where R(x) is again a rational function.
Assumption. No pole for θ ∈ [0, 2π).
The method. Consider z = z(θ) = eiθ. Then{

cos θ = z+z̄
2 = z+1/z

2

sin θ = z−z̄
2i = z−1/z

2i .

Moreover, dz = z′(θ)θ = ieiθθ, and hence

dθ = −idz
z
.

One can then transform the integral to∫ 2π

0
R(cos θ, sinθ) dθ = −i

∫
|z|=1

R
(z + 1/z

2
,
z − 1/z

2i

)dz
z
.

Example 0.3. Consider the integral

I :=

∫ π

0

dθ

a+ cos θ
=

1

2

∫ 2π

0

dθ

a+ cos θ
, a > 1.

Using the above transformations we can re-write the second integral as∫ 2π

0

dθ

a+ cos θ
= −i

∫
|z|=1

1

a+ z+1/z
2

dz

z
= −2i

∫
|z|=1

dz

z2 + 1 + 2az
,

and so our required integral is

I = −i
∫
|z|=1

dz

z2 + 2az + 1
.

Now the denominator has two real roots, α = −a+
√
a2 − 1 and β = −a−√

a2 − 1. Since a > 1, it is easy to see that |α| < 1 while |β| > 1. So

I = (−i)(2πi)Resz=α
1

z2 + 1 + 2az
= 2π lim

z→α

z − α
z2 + 2az + 1

=
2π

α− β
=

π√
a2 − 1

.

Type-III: Products of rational functions and triganometric
functions

These are integrals of the kind∫ ∞
−∞

R(x) cosx dx,

∫ ∞
−∞

R(x) sinx, dx.

These can be combined into the analysis of one single integral∫ ∞
−∞

R(x)eix dx.
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Assumptions. These come in two sub-types where the analysis substan-
tially differs. As before, we let R(x) = P (x)/Q(x).

• Type-III(a). We assume that degQ ≥ degP + 2, and no root of Q
is real.
• Type-III(b). Here we assume that degQ = degP + 1, and no root

of Q is real.

The method. For Type-III(a), one proceeds exactly as in Type-I, and we
do not spend additional time on this. For Type-III(b), it is not clear at all if
the integral converges. It certainly will not absolutely converge, and hence
we cannot use the semi-circle contour. But in many cases, the oscillating
factor eix might make the integral converge conditionally. By definition, if
the integral converges, then∫ ∞

−∞
R(x)eix dx = lim

R1,R2→∞

∫ R2

−R1

R(x)eix dx.

Now let Γ be the rectangle with vertices (−R1, 0), (R2, 0), (R2, H) and
(−R1, H). with sides given by straight-line curves γ1, γ2, γ3 and γ4 (see
figure below). If R1, R2 and H are big enough, the rectangle will contain all

the roots of Q with positive imaginary part. Hence

4∑
i=1

∫
γi

R(z) dz = 2πi
∑

Q(α)=0
Im(α)>0

Resz=αR(z)eiz.

The idea is to first fix R1, R2 and let h → ∞. And then let R1, R2 → ∞.
We illustrate with an example.

Example 0.4. Consider the integral

I =

∫ ∞
−∞

x sinx

1 + x2
=

1

i

∫ ∞
−∞

xeix

1 + x2
dx,

since x cosx/(1 + x2) is an odd function and hence the integral will be zero.
We let f(z) = zeiz/(1 + z2). If H > 1, then the rectangle will contain the
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only pole of f(z) with positive imaginary part, namely z = i. Hence∫
Γ
f(z) dz = 2πiResz=if(z) = 2πi lim

z→i
(z − i) zeiz

1 + z2
= 2πi

( iei2
i+ i

)
=
πi

e
.

Now let us analyze each smooth curve in Γ.

• The curve γ1. This is the integral we are interested in∫
γ1

f(z) dz =

∫ R2

−R1

xeix

1 + x2
dx.

• The curve γ2. On γ2, |z| > R2, and hence if R2 >> 1, then∣∣∣ z

1 + z2

∣∣∣ ≤ 2

R2
.

Then parametrizing the curve by γ2(t) = R2 + it, and noting that
|eiz| = e−t, we see that∣∣∣ ∫

γ2

f(z) dz
∣∣∣ ≤ 2

R2

∫ H

0
e−tdt ≤ 2

R2
.

• The curve γ3. Again if H >> 1, we will have the estimate∣∣∣ z

1 + z2

∣∣∣ ≤ 2

H
.

Also |eiz| = e−H on γ3. Hence |f(z)| ≤ 2e−H/H, and we have∣∣∣ ∫
γ2

f(z) dz
∣∣∣ ≤ 2e−H(R2 +R1)

H
.

• The curve γ4. As for the second curve, we once again have the
bound ∣∣∣ ∫

γ4

f(z) dz
∣∣∣ ≤ 2

R1
.

Together, if we first let H → ∞, and then let R1, R2 → ∞ the integrals on
the last three curves converge to 0, and hence∫ ∞

−∞

xeix

1 + x2
dx =

∫
Γ
f(z) dz =

πi

e
.

Our original integral is then ∫ ∞
−∞

x sinx

1 + x2
=
π

e
.
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