LECTURE-20

VED V. DATAR*

In this lecture, we'll systematically study real variables integrals that can be computed using contour integration.

Type-I: Integrals of rational functions

In this section we study integrals of the form

$$
\int_{-\infty}^{\infty} R(x) d x
$$

where $R(x)$ is a rational function.
Assumption. $R(x)=P(x) / Q(x)$ with $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+2$ and $Q(x)$ has no real root. Recall that by definition,

$$
\int_{-\infty}^{\infty} R(x) d x=\lim _{R_{1}, R_{2} \rightarrow \infty} \int_{-R_{1}}^{R_{2}} R(x) d x .
$$

By the hypothesis on degree and no real root of $Q(x)$, the integral is absolutely convergent and it follows that in fact,

$$
\int_{-\infty}^{\infty} R(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} R(x) d x
$$

The method. We consider the contour γ_{R} consisting of a semi-circle of radius R centred at the origin and traversed in the anti-clockwise direction. We can decompose $\gamma_{R}=l_{R}+C_{R}$, where l_{R} is the interval $(-R, R)$ and C_{R}

is the semi-circular part, and hence

$$
\int_{-R}^{R} R(x) d x=\int_{\gamma_{R}} R(z) d z-\int_{C_{R}} R(z) d z .
$$

If $R \gg 1$, then all roots of $Q(x)$ in the upper half plane lie in the interior of γ_{R}. By the residue theorem,

$$
\int_{\gamma_{R}} R(z) d z=2 \pi i \sum_{\substack{Q(\alpha)=0 \\ \operatorname{Im}(\alpha)>0}} \operatorname{Res}_{z=\alpha} R(z)
$$

On the other hand, since $\operatorname{deg} Q \geq \operatorname{deg} P+2$, when $R \gg 1$,

$$
|R(z)| \leq \frac{M}{R^{2}}
$$

for some $M>0$. Hence,

$$
\left|\int_{C_{R}} R(z) d z\right| \leq \frac{2 \pi M}{R} \xrightarrow{R \rightarrow \infty} 0 .
$$

Putting it all together we have

$$
\int_{-\infty}^{\infty} R(x) d x=2 \pi i \sum_{\substack{Q(\alpha)=0 \\ I m(\alpha)>0}} \operatorname{Res}_{z=\alpha} R(z) .
$$

Example 0.1. Consider the integral

$$
\int_{0}^{\infty} \frac{x^{2}}{1+x^{6}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{6}} d x=\pi i \sum_{\substack{1+\alpha^{6}=0 \\ \operatorname{Im}(\alpha)>0}} \operatorname{Res}_{z=\alpha} R(z),
$$

where $R(z)=z^{2} /\left(1+z^{6}\right)$. The roots of the denominator are given by $\alpha_{k}=$ $e^{\pi i / 6+2 \pi i k / 6}$ for $k=0,1, \cdots, 5$. Of these only $\alpha_{0}=e^{\pi i / 6}, \alpha_{1}=e^{\pi i / 2}=i$ and $\alpha_{3}=e^{5 \pi i / 6}$ are in the upper half region. Each of these is a simple pole, and hence we can compute that
$\operatorname{Res}_{z=\alpha_{k}} R(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{z^{2}}{1+z^{6}}=\alpha_{k}^{2} \lim _{z \rightarrow \alpha_{k}} \frac{z-\alpha_{k}}{1+z^{6}}=\frac{1}{6 \alpha_{k}^{3}}=\left\{\begin{array}{l}-i / 6, k=0 \\ i / 6, k=1 \\ -i / 6, k=2 .\end{array}\right.$
Finally we get that

$$
\int_{0}^{\infty} \frac{x^{2}}{1+x^{6}} d x=\pi i\left(-\frac{i}{6}\right)=\frac{\pi}{6} .
$$

A variation. One also often encounters integrals (as in the above example) of the form

$$
\int_{0}^{\infty} R(x) d x
$$

If $R(x)$ is an even function as in the example above, then one can simply convert it into an integral on all of \mathbb{R} at the cost of an additional factor. But this trick will not work in general, so one might have to get more creative.

Example 0.2. Consider the integral

$$
I=\int_{0}^{\infty} \frac{x}{1+x^{4}} d x=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{x}{1+x^{4}} d x .
$$

As usual, we let I_{R} denote the integral on the right (inside the limit), and we let $f(z)=z /\left(1+z^{4}\right)$. We take the contour $\gamma_{R}=\gamma_{1, R}+C_{R}+\gamma_{2, R}$, where $\gamma_{1, R}$ consists of the straight line from (0.0) to $(R, 0), C_{R}$ is the quadrant of the circle from $(R, 0)$ to $(0, R)$, and $\gamma_{2, R}$ is the straight line from $(0, R)$ to $(0,0)$. By the residue theorem, since the only pole of $f(z)$ in the interior of γ_{R} is a simple pole at $z=e^{i \pi / 4}$, we have

$$
\begin{aligned}
\int_{\gamma_{R}} f(z) d z & =2 \pi i \operatorname{Res}_{z=e^{i \pi / 4}} f(z) \\
& =2 \pi i \lim _{z \rightarrow e^{i \pi / 4}} \frac{\left(z-e^{i \pi / 4}\right) z}{1+z^{4}} \\
& =\frac{2 \pi i e^{i \pi / 4}}{4 e^{3 i \pi / 4}}=\frac{\pi}{2} .
\end{aligned}
$$

Next, we observe that

$$
\int_{\gamma_{1, R}} f(z) d z=I_{R},
$$

and by the discussion above,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

To compute the integral over $\gamma_{2, R}$ we parametrize $\gamma_{2, R}(t)=-$ it, where $t \in$ $(-R, 0)$. Then $\gamma_{2, R}^{\prime}(t)=-i$, and so

$$
\int_{\gamma_{2, R}} f(z) d z=\int_{-R}^{0} \frac{-i t}{1+t^{4}}(-i d t)=I_{R}
$$

Hence if $R>1$, by the residue computation above,

$$
2 I_{R}+C_{R}=\frac{\pi}{2}
$$

Taking the limit as $R \rightarrow \infty$ we see that

$$
I=\frac{\pi}{4}
$$

Remark 0.1. This example was merely for illustration, since the integral can of course be computed in a more elementary way by a change of variables $x^{2}=u$. The reader can challenge himself/herself with the following:

$$
\int_{0}^{\infty} \frac{x^{3}}{\frac{1+x^{5}}{3}}
$$

Type-II: Rational functions of sine and cosine

The type 2 integrals are of the following kind:

$$
\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta
$$

where $R(x)$ is again a rational function.
Assumption. No pole for $\theta \in[0,2 \pi)$.
The method. Consider $z=z(\theta)=e^{i \theta}$. Then

$$
\left\{\begin{array}{l}
\cos \theta=\frac{z+\bar{z}}{2}=\frac{z+1 / z}{2} \\
\sin \theta=\frac{z-\bar{z}}{2 i}=\frac{z-1 / z}{2 i} .
\end{array}\right.
$$

Moreover, $d z=z^{\prime}(\theta) \theta=i e^{i \theta} \theta$, and hence

$$
d \theta=-i \frac{d z}{z} .
$$

One can then transform the integral to

$$
\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta=-i \int_{|z|=1} R\left(\frac{z+1 / z}{2}, \frac{z-1 / z}{2 i}\right) \frac{d z}{z} .
$$

Example 0.3. Consider the integral

$$
I:=\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta}=\frac{1}{2} \int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}, a>1 .
$$

Using the above transformations we can re-write the second integral as

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}=-i \int_{|z|=1} \frac{1}{a+\frac{z+1 / z}{2}} \frac{d z}{z}=-2 i \int_{|z|=1} \frac{d z}{z^{2}+1+2 a z},
$$

and so our required integral is

$$
I=-i \int_{|z|=1} \frac{d z}{z^{2}+2 a z+1} .
$$

Now the denominator has two real roots, $\alpha=-a+\sqrt{a^{2}-1}$ and $\beta=-a-$ $\sqrt{a^{2}-1}$. Since $a>1$, it is easy to see that $|\alpha|<1$ while $|\beta|>1$. So $I=(-i)(2 \pi i) \operatorname{Res}_{z=\alpha} \frac{1}{z^{2}+1+2 a z}=2 \pi \lim _{z \rightarrow \alpha} \frac{z-\alpha}{z^{2}+2 a z+1}=\frac{2 \pi}{\alpha-\beta}=\frac{\pi}{\sqrt{a^{2}-1}}$.

Type-III: Products of rational functions and triganometric FUNCTIONS

These are integrals of the kind

$$
\int_{-\infty}^{\infty} R(x) \cos x d x, \int_{-\infty}^{\infty} R(x) \sin x, d x .
$$

These can be combined into the analysis of one single integral

$$
\int_{-\infty}^{\infty} R(x) e^{i x} d x
$$

Assumptions. These come in two sub-types where the analysis substantially differs. As before, we let $R(x)=P(x) / Q(x)$.

- Type-III(a). We assume that $\operatorname{deg} Q \geq \operatorname{deg} P+2$, and no root of Q is real.
- Type-III(b). Here we assume that $\operatorname{deg} Q=\operatorname{deg} P+1$, and no root of Q is real.
The method. For Type-III(a), one proceeds exactly as in Type-I, and we do not spend additional time on this. For Type-III(b), it is not clear at all if the integral converges. It certainly will not absolutely converge, and hence we cannot use the semi-circle contour. But in many cases, the oscillating factor $e^{i x}$ might make the integral converge conditionally. By definition, if the integral converges, then

$$
\int_{-\infty}^{\infty} R(x) e^{i x} d x=\lim _{R_{1}, R_{2} \rightarrow \infty} \int_{-R_{1}}^{R_{2}} R(x) e^{i x} d x
$$

Now let Γ be the rectangle with vertices $\left(-R_{1}, 0\right),\left(R_{2}, 0\right),\left(R_{2}, H\right)$ and $\left(-R_{1}, H\right)$. with sides given by straight-line curves $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and γ_{4} (see figure below). If R_{1}, R_{2} and H are big enough, the rectangle will contain all

the roots of Q with positive imaginary part. Hence

$$
\sum_{i=1}^{4} \int_{\gamma_{i}} R(z) d z=2 \pi i \sum_{\substack{Q(\alpha)=0 \\ \operatorname{Im}(\alpha)>0}} \operatorname{Res}_{z=\alpha} R(z) e^{i z}
$$

The idea is to first fix R_{1}, R_{2} and let $h \rightarrow \infty$. And then let $R_{1}, R_{2} \rightarrow \infty$. We illustrate with an example.

Example 0.4. Consider the integral

$$
I=\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}}=\frac{1}{i} \int_{-\infty}^{\infty} \frac{x e^{i x}}{1+x^{2}} d x
$$

since $x \cos x /\left(1+x^{2}\right)$ is an odd function and hence the integral will be zero. We let $f(z)=z e^{i z} /\left(1+z^{2}\right)$. If $H>1$, then the rectangle will contain the
only pole of $f(z)$ with positive imaginary part, namely $z=i$. Hence

$$
\int_{\Gamma} f(z) d z=2 \pi i \operatorname{Res}_{z=i} f(z)=2 \pi i \lim _{z \rightarrow i}(z-i) \frac{z e^{i z}}{1+z^{2}}=2 \pi i\left(\frac{i e^{i^{2}}}{i+i}\right)=\frac{\pi i}{e} .
$$

Now let us analyze each smooth curve in Γ.

- The curve γ_{1}. This is the integral we are interested in

$$
\int_{\gamma_{1}} f(z) d z=\int_{-R_{1}}^{R_{2}} \frac{x e^{i x}}{1+x^{2}} d x
$$

- The curve γ_{2}. On $\gamma_{2},|z|>R_{2}$, and hence if $R_{2} \gg 1$, then

$$
\left|\frac{z}{1+z^{2}}\right| \leq \frac{2}{R_{2}} .
$$

Then parametrizing the curve by $\gamma_{2}(t)=R_{2}+i$, and noting that $\left|e^{i z}\right|=e^{-t}$, we see that

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq \frac{2}{R_{2}} \int_{0}^{H} e^{-t} d t \leq \frac{2}{R_{2}} .
$$

- The curve γ_{3}. Again if $H \gg 1$, we will have the estimate

$$
\left|\frac{z}{1+z^{2}}\right| \leq \frac{2}{H}
$$

Also $\left|e^{i z}\right|=e^{-H}$ on γ_{3}. Hence $|f(z)| \leq 2 e^{-H} / H$, and we have

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq \frac{2 e^{-H}\left(R_{2}+R_{1}\right)}{H}
$$

- The curve γ_{4}. As for the second curve, we once again have the bound

$$
\left|\int_{\gamma_{4}} f(z) d z\right| \leq \frac{2}{R_{1}}
$$

Together, if we first let $H \rightarrow \infty$, and then let $R_{1}, R_{2} \rightarrow \infty$ the integrals on the last three curves converge to 0 , and hence

$$
\int_{-\infty}^{\infty} \frac{x e^{i x}}{1+x^{2}} d x=\int_{\Gamma} f(z) d z=\frac{\pi i}{e}
$$

Our original integral is then

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}}=\frac{\pi}{e}
$$

[^0]
[^0]: * Department of Mathematics, Indian Institute of Science

 Email address: vvdatar@iisc.ac.in

