
LECTURE-21

VED V. DATAR∗

This is a continuation of our previous lecture on computing real variable
integrals using the residue theorem. In the present lecture, we’ll focus on
integrations involving branch cuts. But first we refine a method introduced
in the previous lecture.

Type-III(b): Principal values

Now suppose that Q(x) has a simple zero on the real line. In this case even
though the integral of R(x)eix will not converge, the integrals of R(x) sinx
or R(x) cosx might converge if the simple zero happens to coincide with a
zero of sinx and cosx respectively. To illustrate the work-around in this
case, suppose we wish to evaluate the integral∫ ∞

−∞
R(x) sinx.

Assumption. degQ(x) = degP (x)+1 and Q(x) has a simple zero at x = 0.
The method. Consider the contour Γ in the figure below. Using the

analysis from the final section of the previous lecture, we can see that∫ −ε
−∞

R(x)eix dx+

∫ ∞
ε

R(x)eix dx−
∫
Cε

R(z)eiz dz = 2πi
∑

Q(α)=0
Im(α)>0

Resz=αR(z)eiz.

To compute the third integral, note that near z = 0,

R(z)eiz =
A

z
+R0(z),
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where R0(z) is holomorphic near z = 0 (and hence bounded) and A =
Resz=0R(z)eiz. Then by an explicit calculation it is easy to see that

lim
ε→0+

∫
Cε

R(z)eiz dz = πiA,

and hence
(0.1)

lim
ε→0+

(∫ −ε
−∞

R(x)eix dx+

∫ ∞
ε

R(x)eix dx
)

= 2πi
(1

2
Resz=0R(z)eiz+

∑
Q(α)=0
Im(α)>0

Resz=αR(z)eiz
)
.

The principal value of the integral of R(x)eix on R is defined to be

p.v.
(∫ ∞
−∞

R(x)eix dx
)

:= lim
ε→0+

(∫ −ε
−∞

R(x)eix dx+

∫ ∞
ε

R(x)eix dx
)
,

if the limit exists. Note that if Q(x) has a simple pole at x = 0, then the
above limit will exist, as the analysis above shows. Moreover, under these
assumptions, clearly R(z) sin z is integrable near zero and infinity, and so∫ ∞

−∞
R(x) sinx dx = Im

(
p.v.

(∫ ∞
−∞

R(x)eix dx
))
,

and the latter principal value can be computed by the analysis above. Let
us illustrate this via a famous integral.

Example 0.1. Consider the integral of

I =

∫ ∞
−∞

sinx

x
dx.

Then by the above analysis,

I = Im
(
πiResz=0

eiz

z

)
,

and so ∫ ∞
−∞

sinx

x
dx = π.

Remark 0.1. This is the standard example of a function whose improper
integral is finite, and yet the Lebesgue integral does not converge. I cannot
resist the temptation to include another method of computing the integral,
using the so called “Feynman technique”. This is essentially just differenti-
ation under the integral sign, but was popularised by Feynman as his way of
handling integrals that others needed residue calculus for! Let I be the inte-
gral above. We introduce a parameter ‘a > 0’ and consider the the family of
integrals

I(a) =

∫ ∞
0

sin(x)e−ax

x
dx.
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One can check that I(a) is a differentiable function of a, and that differen-
tiation under the integral works. Then,

I ′(a) = −
∫ ∞
0

e−ax sinx dx.

We can compute the integral on the right, by applying integration by parts
twice. Indeed

J(a) :=

∫ ∞
0

e−ax sinx dx = −1

a

∫ ∞
0

sinx de−ax

=
1

a

∫ ∞
0

e−axd sinx

=
1

a

∫ ∞
0

e−ax cosx dx

= − 1

a2

∫ ∞
0

cosx de−ax

=
1

a2
+

∫ ∞
0

e−ax d cosx

=
1

a2
− J(a)

a2
.

Solving for J(a) we get that

I ′(a) = − 1

1 + a2
,

and hence
I(a) = − arctan(a) + C.

Since lima→∞ I(a) = 0, clearly C = π/2. But then taking a → 0+ we see
that

I = lim
a→0+

I(a) = C =
π

2
.

Type-IV: Products of rational functions and powers of x.

In this section we study integrals of the form∫ ∞
−∞

xαR(x) dx,

where R(x) = P (x)/Q(x) is a rational function and α ∈ (0, 1).
Assumption. degQ ≥ degP + 2, and Q(x) has a simple zero at x = 0 and
no other real zero.
The method. Note that the assumption implies that the integral is abso-
lutely convergent, and so∫ ∞

−∞
xαR(x) dx = lim

R→∞

∫ R

−R
xαR(x) dx.

Consider the contour in the figure below. We integrate the function zαR(z)
on the contour. Since we are dealing with fractional powers, we have to make
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a choice of a branch cut and a a corresponding branch of the power. Given
the geometry of the contour, it is clear that we have to use the branch
cut (0,∞). Recall that zα = eα log z, where log z = log |z| + i arg(z), and
arg(z) ∈ (0, 2π).

We first have the following observations:

Lemma 0.1. With the orientations as in the figure,

lim
δ→0

∫
γ+,δ

zαR(z) dz =

∫ R

ε
xαR(x) dx,

lim
δ→0

∫
γ−,δ

zαR(z) dz = e2πiα
∫ R

ε
xαR(x) dx.

The proof relies on the fact that continuous functions on compact sets are
uniformly continuous. For a fixed ε and R, and for small δ > 0, the function
zαR(z) is continuous, and hence uniformly continuous, on the rectangle with
vertices (−δ, ε), (−δ,R), (δ,R) and (δ, ε). The e2πiα factor in the second
integral is due to the fact that there is a jump of e2πiα in the value of zα

across the branch cut z > 0. We leave the details to the reader.
By the residue theorem,∫

γ+,δ

zαR(z) dz+

∫
CR

zαR(z) dz−
∫
γ−,δ

zαR(z) dz−
∫
Cε

zαR(z) dz = 2πi
∑

Q(β)=0
β 6=0

Resz=βz
αR(z).

Letting δ → 0, by the Lemma above,

(1−e2πiα)

∫ R

ε
xαR(x) dx = 2πi

∑
Q(β)=0
β 6=0

Resz=βz
αR(z)−

∫
CR

zαR(z) dz+

∫
Cε

zαR(z) dz.
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Finally, letting ε → 0+ and R → ∞ one proves that the integrals on the
right converge to zero under the given assumptions. We illustrate with an
example.

Example 0.2. Consider the integral

I :=

∫ ∞
0

x−a

1 + x
dx, a ∈ (0, 1).

To get it into the above form, we re-write this as

I =

∫ ∞
0

x1−a

x(1 + x)
dx,

and let Iε,R be the corresponding integral from ε to R. Let f(z) = z1−a/(z(1+

z)). Recall that we are using the branch z1−a = e(1−a) log z, where log(reiθ) =
log r + iθ and θ ∈ (0, 2π). Now f(z) has simple poles at z = 0 and z = −1.
By the above discussion,
(0.2)

(1− e2πi(1−a))Iε,R = 2πiResz=−1
z−a

1 + z
−
∫
CR

z1−a

z(1 + z)
dz +

∫
Cε

z1−a

z(1 + z)
dz

We first estimate the two remaining integrals on the right.

• The integral on CR. When |z| = R >> 1, we have |1 + z| ≥
|z| − 1 > R/2, and so∣∣∣ z−a

1 + z

∣∣∣ =
R−a

|1 + z|
≤ 2R−a

R
=

2

R1+a
.

The integral then satisfies∣∣∣ ∫
CR

z1−a

z(1 + z)
dz
∣∣∣ ≤ 4πR

R1+a
=

4π

Ra
R→∞−−−−→ 0.

• The integral on Cε. When |z| = ε << 1, we have |1+z| ≥ 1−|z| >
1/2, and so ∣∣∣ z−a

1 + z

∣∣∣ =
ε−a

|1 + z|
≤ 2ε−a.

The integral then satisfies∣∣∣ ∫
Cε

z1−a

z(1 + z)
dz
∣∣∣ ≤ 4πε1−a

ε→0+−−−−→ 0.

Finally we compute the residue at z = −1,

Resz=−1f(z) = lim
z→−1

z−a = e−a log(−1) = e−iπa.

Putting all of this together, taking ε → 0+ and R → ∞ in (0.2) we see
that

I =
2πie−iπa

(1− e2πi(1−a))
=

2πie−iπa

(1− e−2πia))
=

2πi

(eπia − e−πia))
=

π

sinπa
.
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A bonus integral

As a final integral, let us compute

I :=

∫ ∞
0

(log x)2

1 + x2
dx.

We denote the corresponding integral over (ε,R) by Iε,R. As an exercise, the
reader should attempt to use the contour above too evaluate this integral.
We will instead use a semicircular contour Γ in the figure below. We use the

branch cut {iy | y ∈ (−∞, 0)}, and the branch of the logarithm defined by
log(reiθ) = log r + iθ, with θ ∈ (−π/2, 3π/2). Let

f(z) =
(log z)2

1 + z2
.

Then clearly, ∫
γ1

(log z)2

1 + z2
=

∫ R

ε

(log x)2

1 + x2
dx = Iε,R,∫

γ2

(log z)2

1 + z2
=

∫ −ε
−R

(log |t|+ iπ)2

1 + t2
dt.

The limits follow from the fact that the integral is absolutely convergent.
For the second integral above we parametrize γ2(x) = t = |t|eiπ with t ∈
(−R,−ε). Putting x = −t int he second integral, we see that∫

γ2

(log z)2

1 + z2
=

∫ −ε
−R

(log |t|+ iπ)2

1 + t2
dx

=

∫ R

ε

(log x+ iπ)2

1 + x2
dx

= Iε,R + 2πi

∫ R

ε

log x

1 + x2
dx− π2

∫ R

ε

dx

1 + x2
.
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Notice that the third integral is arctan(R/ε), and so letting ε → 0+ and
R→∞,

lim
ε→0+
R→∞

(∫
γ1

(log z)2

1 + z2
+

∫
γ1

(log z)2

1 + z2

)
= 2I − π3

2
+ 2πi

∫ R

ε

log x

1 + x2
dx.

By the exact analysis as the previous section, one can prove that

lim
R→∞

∫
CR

(log z)2

1 + z2
dz = lim

ε→0+

∫
Cε

(log z)2

1 + z2
dz = 0,

and so by the residue theorem,

2I − π3

2
+ 2πi

∫ R

ε

log x

1 + x2
dx = 2πiResz=i

(log z)2

1 + z2
(0.3)

= 2πi lim
z→i

(z − i)(log z)2

1 + z2

= 2πi
(log i)2

2i

= −π
3

4
.

Note that in the penultimate line, we used the fact that for our chosen
branch of the logarithm, we have log i = iπ/2. Equating the real parts, and
solving for I, we get that ∫ ∞

0

(log x)2

1 + x2
dx =

π3

8
.

Remark 0.2. Notice that since 2πi times the residue above was completely
real, the imaginary part in equation (0.3) above has to be zero. This yields
a curious integral identity ∫ ∞

0

log x

1 + x2
= 0.

A simple change of variables yields an explanation. Namely, denoting the
integral by J , if we let t = 1/x, we have

J =

∫ 0

∞

−t2 log t

1 + t2

(−dt
t2

)
= −J,

and hence J = 0.
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