
LECTURE-22

VED V. DATAR∗

In this lecture, we will begin our study of some geometric properties of
holomorphic maps.

Conformal maps

Loosely speaking, a conformal map is a map that preserves angles. We
now try to make this concept more rigorous, and give a precise definition of
conformal maps. Throughout this introductory part, we’ll work with either
R2 or C, as is convenient, always remembering the natural identification.
Let f : Ω→ R2 be a C1 map ie. the partial derivatives ∂f/∂x, ∂f/∂y exist
and are continuous. Given two curves γ1(t) = (x1(t), y1(t)) : (−ε, ε) → C
and γ2(t) = (x2(t), y2(t)) : (−ε, ε) → C with γ1(0) = γ2(0) = p, we define
the angle between them as

]γ1(0), γ2(0)

Recall that if ~v1 and ~v2 are non-zero vectors in R2, then the angle between
them is defined to be

]~v1, ~v2 = arccos
(〈~v1, ~v2〉
|~v1||~v2|

)
,

where 〈·, ·〉 is the usual dot product on R2 and | · | is the usual norm (given
by the square-root of the dot-product of the vector with itself). Motivate by
this, we say that a linear map T : R2 → R2 preserves angles or is conformal

if det(T ) > 0 1, and for any pair of non-zero vectors ~v, ~w ∈ R2 \ {~0},
〈~v, ~w〉
|~v||~w|

=
〈T~v, T ~w〉
|T~v||T ~w|

.

More generally, we sat that a C1 mapping f : Ω ⊂ R2 → R2 is conformal at
(x0, y0) ∈ Ω if the total derivative D(x0,y0)f : R2 → R2 is conformal. We say
that f is conformal if it is conformal at all points in Ω. Recall that in the
standard basis the matrix representing D(x0,y0)f is given by the Jacobian
matrix

D(x0,y0)f =

(
∂u
∂x(x0, y0)

∂u
∂y (x0, y0)

∂v
∂x(x0, y0)

∂v
∂y (x0, y0)

)
,

where (u, v) are the components of f ie. in complex notation f = u+ iv.

1This condition is equivalent to the map being orientation preserving. Some authors
choose to not impose this extra condition on conformal maps
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A slightly more geometric insight is obtained by looking at curves. Con-
sider a pair of curves γ1(t), γ2(t) : (−ε, ε) → C intersecting at γ1(0) =
γ2(0) = z0. We say that they intersect at an angle θ at z0 if the angle be-
tween the tangent vectors γ′1(0) and γ′2(0) is θ. The a mapping is conformal
at z0 if and only if for any two curves γ1 and γ2 as above, the angle between
them is equal to the angle between their images f(γ1(t)) and f(γ2(t)) at
f(z0). To see this, it is enough to note that if γ(t) : (−ε, ε) → Ω is a curve
with γ(0) = z0 = (x0, y0) and γ′(0) = ~v, then

D(x0.y0)f(~v) =
d

dt

∣∣∣
t=0

f(γ(t)).

We are now ready to prove our main observation.

Proposition 1. Let f : Ω→ C be a C1 map. Then f is conformal at z0 if
and only if f is complex differentiable at z0 and f ′(z0) 6= 0. In particular, f
is conformal if and only if it is holomorphic with nowhere vanishing complex
derivative. 2.

We first need two elementary lemmas from linear algebra.

Lemma 1. A linear map C : R2 → R2 is conformal if and only if C = λQ,
where Q is an orientation preserving orthogonal transformation and λ > 0.

Recall that Q is orthogonal if and only if |Q~v| = |~v| for all ~v or equivalently
QTQ = I, where QT is the transpose of Q, and I is the identity matrix.

Proof. Let ~e1 and ~e2 denote the standard basis vectors in the x and y di-
rections, and let CTC = (aij) be the matrix representation of CTC in this
basis. By conformality, Then

0 = 〈~e1, ~e2〉 =⇒ 0 = 〈C ~e1, C ~e2〉 = ~e1
T (CTC)~e2 = a12.

By the symmetry of CTC, we also have that a21 = 0, and hence CTC is
diagonal. On the other hand,

0 = 〈~e1 − ~e2, ~e1 + ~e2〉 =⇒ 0 = 〈C(~e1 − ~e2), C(~e1 + ~e2)〉
= 〈C ~e1, C ~e1〉 − 〈C ~e2, C ~e2〉
= a11 − a22.

That is, the diagonal terms in CTC are equal, and hence CTC = µI for
some µ ∈ R. Since detC > 0 and the diagonal terms of CTC have to be
non-negative, we have that µ > 0 Now, let Q = µ−1/2C. Then

CTC = µI =⇒ QTQ = I,

and this proves the claim with λ =
√
µ. The converse, that a matrix C = λQ

is conformal if Q is orthogonal is trivial. �

2If we drop orientation preserving from the definition of conformality, then a conformal
map is either a holomorphic or anti-holomorphic map
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Lemma 2. Any orientation preserving orthogonal 2 × 2 matrix Q is a ro-
tation matrix, that is, it is given by

Q = Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ [0, 2π).

Proof. Since QTQ = I and detQ > 0, we have that detQ = 1. Suppose

Q =

(
a b
c d

)
.

Then the combination of QTQ = I and detQ = 1 gives us the three equa-
tions 

a2 + c2 = 1

b2 + d2 = 1

ad− bc = 1.

In particular, (a − d)2 + (b + c)2 = 0, and hence a = d and c = −b. Since
a2 + c2 = 1, we can set a = cos θ and c = sin θ. The result then follows. �

Proof. • Suppose f is conformal at z0. Then C := Dz0f is a conformal
linear map, and by the above two lemmas, C = λRθ for some θ. In
particular, the partial derivatives of f satisfy the Cauchy-Riemann
equations, and since f is a C1 map (in particular the total derivative
exists), this implies that f is complex differentiable at z0. Moreover,
0 < detC = |f ′(z0)|2, and hence f ′(z0) 6= 0.
• Conversely, suppose f is complex differentiable at z0 and f ′(z0) 6= 0.

Then C := Dz0f satisfies detC = |f ′(z0)|2 > 0. Moreover, it can
be checked by direct calculation (using the fact that the Cauchy-
Riemann equations are satisfied) that Q = |f ′(z0)|−1C is orthogo-
nal. Then by Lemma 1, C is a conformal linear map, and hence by
definition, f is a conformal map.

�

Corollary 1. Any holomorphic, injective function is conformal.

Proof. Let f ∈ O(Ω) and injective, but not conformal. By Proposition 1
there exists a point z0 ∈ Ω such that f ′(z0) 6= 0. If w0 = f(z0), then
the equation f(z) = w0 has a root of multiplicity m > 1 at z = z0. By
our fundamental theorem on the local mapping properties of holomorphic
functions (Theorem 1 in Lecture-19), there exists ε, δ > 0 such that for
each w such that 0 < |w − w0| < δ, there exists at least m distinct points
in Bε(z0) such that f(z) = w. In particular f is not injective, which is a
contradiction. �

Remark 1. Of course, there are plenty of conformal maps which are not
injective. For example f(z) = zn on C∗ is conformal, but not injective if
n > 1. Other examples include ez, sin z, cos z etc.
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Mobius transformations

A fractional linear transformation or a Mobius transformation is a map
of the form

w = T (z) =
az + b

cz + d
with ad − bc 6= 0. Clearly if each of a, b, c and d are scaled by the same
complex number, then T (z) remains invariant. Hence it is often convenient
to normalize so that ad − bc = 1. The set of Mobius transformations is
denoted by Mob(C). Note that the map is defined and holomorphic for all
z except z = −d/c. Moreover,

lim
z→∞

T (z) =
a

c
.

In view of this, it is sometimes more convenient to define T (−d/c) =∞ and
T (∞) = a/c and think of T (z) as a map from the extended complex plane

Ĉ := C ∪ ∞ to itself. We say that a map T : Ĉ → Ĉ is holomorphic, and
write T ∈ O(Ĉ) if the following three conditions hold:

(1) If R
∣∣∣
C

is a meromorphic function and

(2) F (z) = T (1/z) is holomorphic in a neighbourhood of z = 0.

Lemma 3. O(Ĉ) can be identified with the set of rational functions on C.

This is essentially Theorem 0.2 in Lecture 16.

Theorem 1. (1) A Mobius transformation T is a holomorphic, bijective

map from Ĉ onto Ĉ, and it’s inverse is also a Mobius transforma-
tion.

(2) In particular if T (z0) =∞ for some z0 ∈ C, then T
∣∣∣
C\{z0}

→ C \ C
is a conformal map.

(3) Moreover, if T and S are Mobius transformations, then so is S ◦ T .
In other words, Mob(C) forms a group under the law of composition
with the identity element given by the transformation I(z) = z.

Proof. Since T is a rational function, it is clearly in O(Ĉ). The second point
follows from the first easily. Let T (z) be as above.

• T is injective. Suppose T (z1) = T (z2) and neither of z1 or z2
is infinity or −d/c. Then rearranging, it is easy to see that (ad −
bc)z1 = (ad − bc)z2, and since ad − bc 6= 0, we have z1 = z2. Now,
suppose z1 = ∞ then T (z1) = a

c = T (z2). This forces z2 to be
infinity and hence z1 = z2. On the other hand, if z1 = −d/c, then
T (z1) =∞ = T (z2). Again, this means that z2 = −d/c = z1.
• T is surjective. To prove this, we can simply solve the equation
w = T (z). That is, w = T (z), if and only

z =
dw − b
a− wc

.
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Combining this with the injectivity, we then have a well defined map
T−1 : Ĉ → Ĉ defined by

T−1(w) =
dw − b
a− wc

which is again a Mobius transformation.
• S ◦ T is a Mobius transformation. Suppose T is as above, and
S is another Mobius transformation

S(w) =
pw + q

rw + s
.

Then a simply computation gives

S ◦ T (z) =
(pa+ cq)z + pb+ qd

(ra+ cs)z + rb+ ds
.

Moreover,

(pa+ cq)(rb+ ds)− (ra+ cs)(pb+ qd) = (ad− bc)(pr − qs) 6= 0,

and so S ◦ T is again a Mobius transformation.

�

The group PSL(2,C). For a Mobius transformation, if we write the coef-
ficients as a matrix, we get what we call the coefficient matrix

M(T ) =

(
a b
c d

)
.

Since ad− bc 6= 0, the matrix M(T ) is an invertible matrix, that is M(T ) ∈
GL(2,C), the group of all invertible 2 × 2 complex valued matrices. If we
normalize so that ad− bc = 1, then M(T ) ∈ SL(2,C), the so-called special
linear group of 2 × 2 complex valued matrices. Even with this normaliza-
tion, a particular Mobius transformation actually corresponds to 2 matrices,
namely M(T ) and −M(T ), and hence a Mobius transformation actually cor-
responds to an equivalence class of matrices. To make this more precise we
define the projective special linear group as

PSL(2,C) := SL(2,C)/A ∼ ±A.
We denote any element of PSL(2,C) as [A] where A is a matrix in SL(2,C).
One can prove that PSL(2,C) forms a group with the multiplication

[A] · [B] := [AB],

where AB is the usual matrix multiplication. One has to of course check
that if you pick different representatives in [A] (ie. -A instead of A) and/or
[B], then the multiplication gives the same element in PSL(2,C). With this
definition in place, we then obtain a map Φ : Mob(C) → PSL(2,C), given
by

Φ(T ) = [M(T )].

By Theorem 1, part(3), it is clear that

[M(S ◦ T )] = [M(S)M(T )].
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where the multiplication on the right is simply the usual matrix multipli-
cation. In fancier language, this says that the map Φ is a group homomor-
phism. In fact we have the following.

Theorem 2. The map Φ is an isomorphism between the groups Mob(C)
and PSL(2,C).

Remark 2. One can also define PGL(2,C) as GL(2,C)/ ∼ where A ∼ λA
where λ ∈ C∗. It is then easy to see that PGL(2,C) is isomorphic as a group
to PSL(2,C).

Remark 3. A convenient way to represent Mobius transformations is using
homogenous coordinates, and this makes the role of PSL(2,C) much more

transparent. The extended complex plane Ĉ can be identified with the set
P1 of complex lines passing through the origin in C2. The identification is
given by the complex slope. A line L in C2 passing through the origin is
determined by a point (ξ1, ξ2) 6= (0, 0), and any other point on the line is
given by (tξ1, tξ2) for t ∈ C. Hence we represent points in P1 as equivalence
classes of these points [ξ1 : ξ2]. The complex slope is then given by z = ξ1/ξ2,

and is a well defined number in Ĉ. For instance the points [0 : 1] and [1 : 0]

correspond to the points 0 and ∞ respectively in Ĉ. We say that [ξ1 : ξ2]
are the homogenous coordinates of z. Note that homogenous coordinates are
unique, only up to scaling ie. both (ξ1, ξ2) and tξ1, tξ2) for t 6= 0, represent

the same point z in Ĉ.
With this identification, if w = ζ1/ζ2 and z = ξ1/ξ2, we can rewrite

w = Tz as (
ζ1
ζ2

)
=

(
a b
c d

)(
ξ1
ξ2

)
.

So the action of the Mobius transformation on Ĉ is exactly the linear action
of a 2× 2 matrix on C2 \ {(0, 0)} = {set of homogenous coordinates}.

The cross ratio. Given any four numbers z1, z2, z3, z4 in the extended
complex plane Ĉ, the cross ratio is defined to be

(z1, z2, z3, z4) =
z3 − z1
z3 − z2

· z4 − z2
z4 − z1

.

Note that if one of the points is infinity, then the cross ratio is defined by
taking a limit. For instance, if z1 =∞, then

(∞, z2, z3, z4) =
z4 − z2
z3 − z2

.

The importance of the cross ratio comes form the following theorem.

Theorem 3. (1) Given any three points z2, z3, z4, there exists a unique
Mobius transformation mapping these points to 1, 0 and ∞ respec-
tively. In fact we can take

S(z) = (z, z2, z3, z4).
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(2) If T is any Mobius transformation, then

(Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4).

Proof. (1) Clearly, S(z) = (z, z2, z3, z4) is a Mobius transformation that
takes (z2, z3, z4) to (1, 0,∞). Let T be another such Mobius trans-
formation. Then S ◦T−1 takes (1, 0,∞) to itself. Then it is not hard
to prove that S ◦ T−1(z) = z, and hence S(z) = T (z).

(2) Let S(z) = (z, z2, z3, z4). Then ST−1 carries (Tz2, T z3, T z4) to
(1, 0,∞). Then by part (1), ST−1(z) = (z, Tz2, T z3, T z4). Applying
this to Tz1, we see that

(z1, z2, z3, z4) = Sz1 = ST−1Tz1 = (Tz1, T z2, T z3, T z4).

�

As a consequence we have the following.

Corollary 2. Given any pair of three points (z1, z2, z3) and (w1, w2, w3),
there exists a unique Mobius transformation that takes the first triple to the
second.

Proof. Let S and T be the Mobius transformations that take (z1, z2, z3) and
(w1, w2, w3) to (1, 0,∞) respectively. Then T ◦ S−1 is the Mobius transfor-
mation that we need. Uniqueness follows from the fact that there is unique
transofrmation (namely the identity) that takes (1, 0,∞) to itself. �

There is another, more geometric, application of the cross ratio. A gen-
eralised circle in C is either a circle (given by an equation |z − z0| = r or a
straight line (given by the equation āz + az̄ + b = 0, where b ∈ R). In prin-
ciple, a straight line is being thought of as a circle with infinite radius. An
additional justification for this terminology is that both circles and straight
lines in C correspond to circles on the Riemann sphere via the stereographic
projection (or rather via it’s inverse). A key observation is that three points
determine a unique generalised circle (in the case of a line, one of the points
will be at infinity).

Theorem 4. The cross ratio of of (z1, z2, z3, z4) is real if and only if the four
points lie on a generalised circle. Consequently, a Mobius transformation
maps generalised circles to generalised circles.

Proof. The second part follows from the first part, and the fact that the cross
ratio is invariant under Mobius transformations. So we focus on proving the
first part. The key is the following claim.
Claim. If T is a Mobius transformation, then T−1 maps the (extended)

real axis R̂ to a generalised circle.
Assuming this we complex the proof. There are two directions.

• =⇒ . Suppose the cross ratio (z1, z2, z3, z4) is real. Consider Tz =
(z, z2, z3, z4). Then Tz1 ∈ R. Moreover, (Tz2, T z3, T z4) = (1, 0,∞)
and hence they already lie on the real line. Since T−1 maps R to a
generalised circle, z1, z2, z3 and z4 lie on a generalised circle.
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• ⇐= . Suppose z1, z2, z3, z4 lie on a generalised circle. Once again
consider Tz = (z, z2, z3, z4). Once again, (Tz2, T z3, T z4) = (1, 0,∞)
and hence they already lie on the real line. So z2, z3, z4 lie on the
generalised circle T−1(R̂). Hence z1 also lies on T−1(R̂), and so
Tz1 ∈ R. In particular the cross ratio is real.

Proof of the claim: Let z = T−1(w). If w is real, then Tz = Tz. If
T = az+b

cz+d , then this condition translates to

az + b

cz + d
=
āz̄ + b̄

c̄z̄ + d̄
.

Cross multiplying and simplifying, we get

(ac̄− cā)|z|2 + (ad̄− cb̄)z + (bc̄− dā)z̄ + bd̄− db̄ = 0.

There are two cases:

• Case-1: ac̄−cā = 0. Then since ad−bc 6= 0 we have that ad̄−cb̄ 6= 0.
Hence the equation above represents a straight line.
• Case-2: ac̄ − cā =6= 0. Completing the square, we can rewrite the

equation as ∣∣∣z +
ād− c̄b
āc− c̄a

∣∣∣ =
∣∣∣ad− bc
āc− c̄a

∣∣∣,
which clearly defines a circle.

�

The Cayley transform. Perhaps the most important Mobius transforma-
tion is the the Cayley transform:

β(z) =
z − i
z + i

.

To compute it’s inverse, we set w = β(z). and solve for z. It is easy to see
that

β−1(w) = i
1 + w

1− w
.

Figure 1. The Cayley transform
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Lemma 4. The Cayley transform is a biholomorphism from the upper half
plane H onto the unit disc D. Moreover, it maps the boundary ∂H bijectively
to ∂D.

Proof. • β(z) maps H into D and ∂H to ∂D. To see this, we compute

|β(z)|2 =
1 + |z|2 + i(z − z̄)
1 + |z|2 − i(z − z̄)

=
1 + |z|2 − 2Im(z)

1 + |z|2 + 2Im(z)
< 1

if Im(z) > 0 i.e. if z ∈ H. On the other hand it is also clear from
the computation that |β(z)| = 1 if and only if Im(z) = 0.
• β(z) is surjective from H onto D. It is easy to see by direct

computation that β−1(w) given by the above formula is an inverse.
It is a nice exercise to check that indeed β−1(w) is in the upper half
plane if w ∈ D.

�

A survey of elementary mappings

Given two regions Ω1 and Ω2, we wish to construct a conformal map one
to the other. A reasonable strategy is to first try to map Ω1 into the unit
disc, and then to map the unit disc into Ω2. A priori, t his strategy might
seem limiting. After all why would there exist such a conformal map from
Ω1 into the unit disc. In a couple of lectures time, we’ll prove a deep fact
- The Riemann mapping theorem - that for a large class of regions, namely
simply connected strict subsets of C, such a mapping always exists. In view
of this it is important to build up a toolkit of familiar mappings, so that more
complicated mapping can be constructed by taking products, compositions
etc. So in this section we’ll familiarise ourselves with the mapping properties
of complex powers, exponentials and logarithms. A good strategy in finding
the image of a certain region under a conformal mapping is to find the
image of the boundary. Our convention is to use z = x+ iy as the complex
coordinate in the domain, and w = u+ iv as the complex coordinate on the
image.

Rotations and dilations. Clearly rotations Rθ(z) = eiθz, dilations and
Tλ(z) = λz are examples of conformal maps. In fact these form a subgroup
of the full group of Mobius transformations.

Complex powers. Complex powers are useful in mapping sectors and half
planes to each each other. We illustrate this using two examples.

• Case-1: f(z) = zn, n ∈ N. An example of such a mapping is in
Figure 2
• Case-1: f(z) = zn, n ∈ N. An example of such a mapping is in

Figure 3

.
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Figure 2. integer powers turn a sector into a half plane

Figure 3. fractional powers can turn a half plane into a sector

The logarithm. If L(z) = log z is a branch of the logarithm, then L′(z) =
1/z 6= 0 on it’s domain of definition. Hence it defines a conformal map.
As an illustration, in the Figures 4 and 5, we consider the branch of the
logarithm

log z = log |z|+ i arg(z),

where arg(z) ∈ (−π/2, 3π/2). That is, our branch cut is the line {z =
iy | y < 0} or the −ve y axis.

Figure 4. The logarithm mapping the H into an infinite hori-
zontal strip

In the Figure 4, the boundary of the domain H contained in the domain
of definition of log z consists of two components, namely the negative and
positive x (or real) axis. The negative axis consists of points with arg(z) = π,
and hence is mapped via the log to the line v = π. Similarly the positive
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x-axis has arg(z) = 0, and hence is mapped to v = 0. Hence H is mapped
by the above branch of logarithm to the infinite strip {0 < v < π}. The
reader should similarly work out the mapping in Figure 5.

Figure 5. The logarithm mapping a semi-circular region into a
half infinite strip

The exponential map. The map f(z) = ez is clearly a conformal map by
Proposition 1 since it’s derivative never vanishes. Figures 6 and 7 illustrate
some of the mapping properties of the exponential. The reader should try
to work out why the images of the two mappings below are given by the
figures on the left. As in the discussion above, the trick is to work out the
images of the various boundary components.

Figure 6. The exponential mapping a half infinite strip to a
semi-circular region.

∗ Department of Mathematics, Indian Institute of Science
Email address: vvdatar@iisc.ac.in

11



Figure 7. eiz mapping a half infinite strip to a semi-circle.
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