
LECTURE-23

VED V. DATAR∗

In this lecture, we compute the automorphism groups of the disc and the
complex plane.

Biholomorphisms and automorphisms

A holomorphic function f : Ω → Ω′ is said to be a bi-holomorphism if it
is a bijective function, and f−1 is also holomorphic.

Lemma 1. A holomorphic function f : Ω→ Ω′ is a bi-holomorphism if and
only if it is bijective.

Proof. If f is a bi-holomorphism, then it is automatically bijective from the
definition. Conversely suppose f : Ω→ Ω′ is a bijective, holomorphic func-
tion. Injectivity implies that f ′(z) 6= 0 for all z ∈ Ω. Then the holomorphic
inverse function theorem implies that the inverse is holomorphic. �

For any domain Ω ⊂ C, a bi-holomorphic function f : Ω→ Ω is called an
automorphism of Ω.

Lemma 2. The set of automorphisms of a domain Ω

Aut(Ω) := {f : Ω→ Ω | f is holomorphic and bijective},
forms a group under the law of composition.

We call Aut(Ω) the automorphism group of Ω. Note that if Ω and Ω′ are
bi-holomorphic, then Aut(Ω) and Aut(Ω′) are isomorphic as groups. In fact,
if ϕ : Ω→ Ω′ is a biholomorphism, then Φ : Aut(Ω)→ Aut(Ω′) defined by

Φ(f) = ϕ ◦ f ◦ ϕ−1,
is the required group isomorphism.

The aim of this note is to compute the automorphism groups of the com-
plex plane, the punctured plane and the disc (and hence the upper half
plane).

1. Automorphism group of the disc

In this section, we compute Aut(D).Recall that in Problem-5 from Assignment-
1, you were asked to prove that for any |α| < 1,

ψα(z) :=
α− z
1− ᾱz
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is a biholomorphism from the disc to itself. Our main theorem is that upto
rotation these are the only automorphisms. En route, we’ll also provide a
short proof that ψα is indeed an element in the automorphism group, using
some of the tools we have developed over the past few months, but which
were of course unavailable when you were asked to solve the problem!

Theorem 1. The automorphism group of the disc is given by

Aut(D) = {ψα,θ(z) = eiθ
α− z
1− zᾱ

| α ∈ D, θ ∈ [0, 2π)}.

Moreover, the automorphism ψα,θ is precisely the automorphism that takes
z = 0 to z = α. In particular, the automorphisms of the disc fixing the
origin are all given by z → eiθz for some fixed θ.

The key tool in the proof is the Schwarz lemma, whose utility extends
well beyond the computation of the automorphism groups of the disc.

Lemma 3 (Schwarz lemma). Let f : D → D be a holomorphic map such
that f(0) = 0. Then

• |f(z)| ≤ |z| for all z ∈ D.
• |f ′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some non-zero z or |f ′(0)| = 1, then f(z) = az
for some a ∈ C with |a| = 1

Proof. Since f(0) = 0, there exists a holomorphic function

g : D→ D
such that

f(z) = zg(z).

For any fixed z ∈ D, let 1 > r > |z|. Then by the maximum modulus
principle,

|g(z)| ≤ max
|w|=r

|f(w)|
r

<
1

r
.

Letting r → 1− we see that |g(z)| < 1 for all z ∈ D, and hence

|f(z)| < |z|
for all z ∈ D. This directly implies that |f ′(0)| ≤ 1. Now, suppose that
|f(z0)| = |z0| for some z0 ∈ D \ {0}. Then |g(z0)| = 1, and hence by the
maximum modulus principle, g(z) must be a constant, and hence f(z) = az
for some a with |a| = 1.

Finally, suppose |f ′(0)| = 1. Then there exists a sequence zn → 0, zn 6= 0
such that

1− 1

n
≤ |f(zn)|
|zn|

≤ 1.

By the definition of g, we then have that 1 − 1/n ≤ |g(zn)| ≤ 1, and hence
by continuity, |g(0)| = 1. Then 0 is an interior maximum point for |g(z)|,
and hence again by maximum modulus principle, g(z) is a constant. That
is, g(z) = a, where a = g(0) satisfies |a| = 1, and once again f(z) = az.
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Proof of the theorem. There are two steps in the proof. We let ψα := ψα,0
as above (ie. ψα is the map with rotation by zero angle). Note that ψα
exchanges 0 and α. That is, ψα(0) = α and ψα(α) = 0.

• We’ll first prove that each ψα,θ is actually an automorphism. To see
this, first we observe that

|ψα,θ(z)|2 = ψα,θ(z)ψα,θ(z) =
|α|2 + |z|2 − zᾱ− z̄α
1 + |α|2 − zᾱ− z̄α

,

and so |ψα,θ(z)| = 1 if |z| = 1. But then by the maximum principle,
since ψα,z is clearly non-constant, |ψα,θ(z)| < 1 for all z ∈ D. Hence
ψα,θ maps D into itself. Next, consider ϕα := ψα ◦ ψα. Clearly,
ϕα,θ(0) = 0 and ϕα(α) = α, and ϕα maps D into itself. By equality
in Schwarz lemma, ϕα(z) = z for all z ∈ D. In particular, ψα is
surjective and injective, and hence a biholomorphism, with inverse
function given by itself ie. ψ−1α = ψα. But then ψα,θ = eiθψα is also
clearly a biholomorphism.
• It remains to show that these are the only automorphisms. Let F ∈

Aut(D) such that F (0) = 0. By the Schwarz lemma, |F (z)| ≤ |z|.
But the same also holds true for F−1(z), and so

|z| = |F−1(F (z))| ≤ |F (z)| ≤ |z|,

and hence all inequalities must be equalities. That is, |F (z)| = |z|
for all z ∈ D. By the equality part of Schwarz lemma, we have that
F (z) = eiθz for some θ ∈ [0, 2π). Now suppose F ∈ Aut(D) such that
F (α) = 0. Consider the automorphism Fα(z) := F (ψα(z)). Then
Fα(0) = 0, and hence by the above argument, Fα(z) = eiθz for some
θ. But then, since ψ−1α = ψα, we have that

F (z) = Fα(ψ−1α (z)) = eiθψα(z) = ψα,θ(z).

This completes the proof of the theorem. �

2. Automorphism groups of C and C∗

Theorem 2. Let f : C→ C be an injective holomorphic map. Then

f(z) = az + b

for some a, b ∈ C with a 6= 0.Since any such map is automatically surjective,
we have that

Aut(C) = {az + b | a, b ∈ C, a 6= 0}.

Theorem 3. Any injective holomorphic map f : C∗ → C∗ is given by either

f(z) = az or f(z) =
a

z
,
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for some a ∈ C and a 6= 0. Since any such map is automatically surjective,
we have that

Aut(C∗) = {az, a
z
| a ∈ C, a 6= 0}.

The key lemma needed to compute both the automorphism groups is the
following.

Lemma 4. Let g : C∗ → C be holomorphic and injective. Then g cannot
have an essential singularity at z = 0.

Proof. Suppose, for the sake of contradiction, g has an essential singularity
at z = 0. Consider the disc D1(2) of radius 1 around the point z = 2, and
the unit disc D. Note that both these discs are disjoint from each other. By
the open mapping theorem, V = g(D1(2)) is an open neighborhood of g(2).
By the Casorati-Weierstrass theorem, g(D) is dense in C. That means there
is some w ∈ g(D1(2)) and some z1 ∈ D such that

g(z1) = w.

But since w ∈ g(D1(2)), there is already a z2 ∈ D1(2) such that

g(z2) = w.

Since the open discs D1(2) and D are disjoint sets, z1 6= z2, but g(z1) =
w = g(z2). This contradicts the injectivity of g. Hence z = 0 cannot be an
essential singularity. �

We also need an elementary generalization of Liouville’s theorem, which
was a homework problem sometime back. We provide a proof for the sake
of completeness.

Lemma 5. Let f : C→ C be an entire function such that

|f(z)| ≤M(1 + |z|n)

for some M > 0 and all z ∈ C. Then f is a polynomial of degree less than
or equal to n.

Proof. By the Cauchy estimates (Corollary 3 in Lecture-8), if R > 1, we
have that,

|f (k)(0)| ≤ k!M(1 +Rn)

Rk
. ≤ 2Mk!Rn−k.

But this holds no matter what R is chosen. So letting R→∞, if k > n, the
right hand side goes to zero. Hence

f (k)(0) = 0

for all k = n + 1, n + 2, · · · . But since f is entire, it has a power series
expansion whose coefficients are given by

ak =
f (k)(0)

k!
= 0,

for k > n. Hence the power series terminates, and f is a polynomial of
degree less than or equal to n. �
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We are now ready to compute the automorphism groups of C and C∗.

Proof of Theorem 2. Let f : C → C be an injective, holomorphic map.
The key idea is to study the function at infinity. That is, define a holomor-
phic function g : C∗ → C by

g(z) := f
(1

z

)
.

Then it is easy to see that g is also injective. Applying lemma 4, g either
has a zero or a pole at z = 0. In any case, this means that there exists a
constant M > 0 and integer n > 0 such that |z|n|g(z)| < 1

M on |z| < 1.
Transferring the estimates to f , we see that

|f(z)| < M |z|n,
for |z| > 1. On the other hand, since |z| ≤ 1 is compact, we actually get
that (possibly by choosing a bigger M), that

|f(z)| ≤M(1 + |z|n),

for all z ∈ C. Then by lemma 5, f(z) is a polynomial. By the fundamen-
tal theorem of algebra, f(z) has at most n roots. We claim that n = 1.
To see this, note that by injectivity, all the roots have to be identical, or
equivalently, f(z) = a(z − α)n for some a, α ∈ C with c 6= 0. If n > 1, then
f ′(α) = 0, and hence f(z) cannot even be locally injective (see Theorem 1
or Corollary 0.3 in Lecture 19), and hence we must have n = 1. But then
clearly f(z) = az + b, where we put b = −aα. This proves the first part
of the theorem. For the second part, notice that any linear polynomial is
surjective, and hence the f above will automatically be surjective, and hence
give an automorphism. �

Proof of Theorem 3. Let f : C∗ → C∗ be an injective map. Then by
lemma 4, z = 0 is either a removable singularity or a pole.

Case 1. Suppose z = 0 is a removable singularity. Then f extends to
f̃ : C→ C. We then claim that f̃ is also injective. Suppose not, then since
f is injective, the only possibility is that there are z0, w0 ∈ C with z0 6= 0
such that

f̃(z0) = f̃(0) = w0.

By the argument principle there is a neighborhood U of w0 and disjoint
discs Dr(z0), Dρ(0) around z0 and 0 respectively such that for any w ∈ U ,
w 6= w0 there are solutions z1 ∈ Dr(z0) and z2 ∈ Dρ(0) to

f̃(z) = w.

. But z2 6= 0 since w 6= w0. So the two distinct solutions are actually
solutions to

f(z) = w,

contradicting the injectivity of f . This proves that the extension f̃ : C→ C
is an injective holomorphic map. But then by Theorem 2, f̃(z) = az+ b for
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some a, b ∈ C and a 6= 0. All that is needed now is to show that b = 0. If not,
then 0 = f̃(−b/a) = f(−b/a) which is a contradiction since f takes non-zero
values being a map from C∗ into C∗. To sum up, in this case f(z) = az.

Case-2: Suppose z = 0 is a pole. Then if we define

h(z) =
1

f(z)
,

then h extends to an holomorphic function h̃ : C → C. Then by the proof
in the first case, we can see that

h̃(z) = cz,

for some c 6= 0. But then this shows that f(z) = z/c, and proves the theorem
with a = 1/c. �

3. Automorphism group of the extended complex plane

. Recall that a map F : Ĉ→ Ĉ is called holomorphic if

(1) If F
∣∣∣
C

is a meromorphic function and

(2) G(z) = F (1/z) is holomorphic in a neighbourhood of z = 0.

Theorem 4. The automorphism group of the extended complex plane is
given by

Aut(Ĉ) =
{
T (z) =

az + b

cz + d
| ad− bc = 1

}
,

and hence Aut(Ĉ) ∼= PSL(2,C) = SL(2,C)/± I.

Proof. From our discussion in the previous lecture, it is clear that any T (z)

defined as above is an automorphism of Ĉ, and hence the set on the right
is contained in Aut(Ĉ). To show the reverse containment, let T ∈ Aut(Ĉ).

Then there is a unique point z0 ∈ Ĉ such that T (z0) = ∞, and a unique
point w0 such that T (∞) = w0.

• Case-1: z0 = ∞. In this case, w0 = ∞, and so F (z) = T
∣∣∣
C

is a

bi-holomorphism of C, and by Theorem 2, F (z) = az + b for some
a, b and a 6= 0. But then extending this to infinity, T (z) = az + b
and hence we are done.
• Case-2: z0 6= ∞. In this case, since T is one-one, w0 6= ∞ (else it

will map both z0 and ∞ to ∞, contradicting the one-one property).
Now consider the function F : C∗ → C defined by

F (z) = T (z + z0)− w0.

It is easy to check that F maps C∗ to C∗, and is infact an automor-
phism of C∗ is (this follows essentially from the fact that F has a
zero at infinity). Moreover, since z = 0 is a pole for F , by Theorem
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3, there exists an a ∈ C∗ such that F (z) = a/z. But then solving
for z,

T (z) =
a

z − z0
+ w0,

and is a Mobius transformation.

�
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