
LECTURE-24

VED V. DATAR∗

Recall that two domains are called conformally equivalent or biholomor-
phic if there exists a holomorphic bijection from one to the other. This
automatically implies that there is an inverse holomorphic function. The
aim of this lecture is to prove the following deep theorem due to Riemann.
Denote by D the unit disc centered at the origin.

Theorem 0.1. Let Ω ⊂ C be a simply connected set that is not all of C.
Then for any z0 ∈ Ω, there exists a unique biholomorphism F : Ω→ D such
that

F (z0) = 0, and F ′(z0) > 0.

Here F ′(z0) > 0 stands for F ′(z0) being real and positive, and can be
thought of as a normalization, to ensure that the above map is unique. The
precise normalization by itself is not very important. The reader should
try to test her/his understanding of the proof by coming up with other
normalizations that work, and also some that do not work (for instance,
you might not be able to impose that F ′(z0) = 1). Note that by Liouville’s
theorem, such a statement is patently false if Ω = C, and so the hypothesis
that Ω is a proper subset is a necessary condition. As a consequence of the
Theorem, we have the following corollary.

Corollary 0.1. Any two proper, simply connected subsets for C are confor-
mally equivalent.

Proof of uniqueness in Theorem 0.1. Let F1 : Ω→ D and F2 : Ω→ D
be two such mappings. Then f = F2 ◦F−1

1 satisfies the following properties

• f : D→ D is injective and onto.
• f(0) = 0.
• f ′(0) > 0.
• f−1 also satisfies both these properties.

By Schwarz lemma, |f(z)| ≤ |z| for all z ∈ D and |f−1(w)| ≤ |w| for all
w ∈ D. Let w = f(z), then second inequality gives |z| ≤ |f(z)|, and hence
|z| = |f(z)|. But then by the equality part of Schwarz lemma, we see that
f(z) = az for some a ∈ C with |a| = 1. But then f ′(0) = a, which forces
a = 1 (since f ′(0) > 0). Hence f(z) = z for all z ∈ D or equivalently
F2(w) = F1(w) for all w ∈ Ω.
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Montel’s and Hurwitz’s theorems

The proof relies on two theorems on sequences of holomorphic functions.
Recall that we say that a sequence of functions fn converges compactly on Ω
to f if it converges uniformly on any compact subset K ⊂ Ω. More precisely,
for every compact set K ⊂ Ω and ε > 0, there exists an N = N(ε,K) such
that

sup
z∈K
|fn(z)− f(z)| < ε

whenever n > N . In Lecture 9 we proved the following theorem:

Theorem 0.2. If {fn}∞n=1 is a sequence of holomorphic functions on Ω that
converge compactly to f : Ω→ C, then f(z) is holomorphic. Moreover

f (k)
n → f (k)

compactly on Ω for all k ∈ N.

We say that family of continuous functions F on an open set Ω is normal if
every sequence of functions in F has a subsequence that converges compactly
on Ω. Note that the definition does not require the limiting function to be
contained in F . On the other hand, by Theorem 0.2 above, the limiting
function will certainly be holomorphic. The family is said to be locally
uniformly bounded if for any K ⊂ Ω compact, there exists a constant MK

such that
sup
z∈K
|f(z)| < MK

for all f ∈ F .

Theorem 0.3 (Montel’s theorem). A family F of holomorphic functions
on Ω is normal if and only if it is locally uniformly bounded.

To prove this, we first recall the Arzela-Ascoli theorem. Recall that family
F of continuous functions on Ω is said to locally equicontinuous if for all
a ∈ Ω and all ε > 0 there exists a δ = δ(a, ε) such that

z, w ∈ Dδ(a) =⇒ |f(z)− f(w)| < ε,

for all f ∈ F . Then we have the following basic theorem, which we state
without proof.

Theorem 0.4 (Arzela-Ascoli). If a family of functions is locally equicon-
tinuous and locally uniformly bounded, then for every sequence of functions
{fn} ∈ F , there exists a continuous function f and a subsequence {fnk}
which converges to f compactly on Ω.

Remark 0.1. Generally, Arzela-Ascoli is stated for compact sets assuming
equicontinuity. One can prove the above theorem by taking an exhaustion
of Ω by compact sets ie. K1 ⊂ K2 · · · ⊂ Kn · · · such that Ω = ∪Kn. Local
equicontinuity will then imply that the family is genuinely equicontinuous on
each compact set Kn. Then apply the standard Arzela-Ascoli to F restricted
to each Kn, and use Cantor diagonalization argument.
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Proof of Montel’s theorem. First, suppose that F is a locally uniformly
bounded family of holomorphic functions. By the Arzela-Ascoli theorem,
if we show that F is automatically locally equicontinuous, then for every
sequence, there will exist a subsequence which converges compactly on Ω to
a continuous function f . By Theorem 0.2, the limit function will then be
holomorphic, and hence F would be a normal family.

Hence it is enough to show that the family F is locally equicontinuous.
To do this, we use the Cauchy integral formula. Fix an a ∈ Ω and ε > 0.
We need to choose a delta that works. Let r > 0 be such that D2r(a) ⊂ Ω,
and let Mr such that

|f(ζ)| ≤Mr,

for all ζ ∈ D2r(a) and all f ∈ F . By the Cauchy estimates (see Corollary 3
from Lecture 8), we have that for any ζ ∈ Dr(a),

|f ′(ζ)| ≤ 2Mr

r
.

Then by the fundamental theorem for complex integrals, for any z, w ∈
Dr(a),

|f(z)− f(w)| =
∣∣∣ ∫

lw,z

f ′(ζ) dζ
∣∣∣ ≤ 2Mr

r
|z − w|.

Given an ε > 0, let us pick δ < 2Mrε/r. Then whenever |z − w| < δ, we
have |f(z)− f(w)| < ε. This proves local equicontinuity.

Conversely, suppose F is a normal family, but not locally uniformly
bounded. Then there exists a compact set K ⊂ Ω, and a sequence of func-
tions fn ∈ F such that

sup
z∈K
|fn(z)| ≥ n.

Since the family is normal, there exists a subsequence fnk which converges
uniformly on K. But then supz∈K |fnk | would be a bounded sequence which
is a contradiction. �

We also need the following theorem due to Hurwitz on the limit of injective
holomorphic functions.

Theorem 0.5 (Hurwitz). Let fn : Ω → C be a sequence of holomorphic,
injective functions on an open connected subset, which converge uniformly
on compact subsets to F : Ω → C. Then either F is injective, or is a
constant.

Proof. We argue by contradiction. So suppose F is non constant and not
injective. Then for some w ∈ C, there exists a, b ∈ Ω such that F (a) =
F (b) = w. Let fn(a) = wn, then wn → w. Choose an r > 0 small enough

so that there does not exist any z ∈ Dr(b) such that F (z) = w. This is
possible by the principle of analytic continuation since we are assuming that
F is non-constant. In particular a /∈ Dr(b). Since fn is injective for any n,
there exists no solution to

fn(z) = wn
3



in the closure of the disc Dr(b), and so by the argument principle applied
to fn(z)− wn, we see that

1

2πi

∫
|ζ−b|=r

f ′n(ζ)

fn(ζ)− wn
dζ = 0.

But since fn → F uniformly on compact sets, in particular, on the compact
set Dr(a) we have f ′n(ζ) → F ′(ζ) and fn(ζ) − wn → F (ζ) − w uniformly.
Hence the integral also converges uniformly, and from this we conclude that

1

2πi

∫
|ζ−b|=r

F ′(ζ)

F (ζ)− w
dζ = 0.

This integral calculates the number of zeroes of F (ζ)−w = 0 in Dr(b) which
we know is at least one (counting multiplicity) since F (b) = w. This is a
contradiction, and hence if F is non-constant, it has to be injective. �

Proof of Riemann mapping theorem

For a fixed z0 ∈ Ω, we define a family F of holomorphic function functions
by

F = {f : Ω→ D | f holomorphic and injective, f(z0) = 0}.
The required biholomorphic map will be obtained by maximizing the mod-
ulus of the derivative at z0, amongst all functions in this family. We first
show that this family is non-empty.

Lemma 0.1. There is an injective holomorphic function f : Ω → D such
f(z0) = 0. That is, F 6= φ.

Proof. Since Ω 6= C, there is an a ∈ C \ Ω. Then z − a is never zero on
Ω. Since Ω is simply connected, we can choose a holomorphic branch of
log (z − a), or in other words, there is a holomorphic function l : Ω → C
such that

el(z) = z − a
for all z ∈ Ω. Clearly l(z) is injective. Moreover, if z1, z2 ∈ Ω and z1 6= z2

then l(z2)− l(z1) /∈ 2πiZ, i.e their difference cannot be an integral multiple
of 2πi. In particular, l(z) 6= l(z0) + 2πi. We in fact claim that |f(z) −
(f(z0) + 2πi)| is bounded strictly away from zero. That is,

Claim. There exists an ε > 0 such that |l(z) − (l(z0) + 2πi)| > ε for all
z ∈ Ω.

To see this, assume the claim is false. Then there is a sequence {zn} ∈ Ω
such that l(zn) → l(z0) + 2πi. But then exponentiating, since the expo-
nential function is continuous, we see that zn → z0. But then, since l(z)
is continuous, this implies that l(zn) → l(z0) contradicting the assumption
that l(zn)→ l(z0) + 2πi. This proves the claim.

Now consider the function

f̃(z) =
1

l(z)− l(z0)− 2πi
.
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By the claim, this is a bounded, injective and holomorphic function on Ω,
and hence f̃ : Ω → DR(0), where R can be taken to be R = 1/ε where ε is

from the claim above. Suppose f̃(z0) = a, then

f(z) =
f̃(z)− a
R+ |a|

is the required function. �

Next, let
λ = sup

f∈F
|f ′(z0)|.

We claim that λ > 0. To see this, consider the f ∈ F constructed above.
Since f(z) is injective, by Corollary 0.3 from Lecture 19, |f ′(z0)| > 0 and
hence λ > 0.

Lemma 0.2. There is a function F ∈ F such that |F ′(z0)| = λ. In partic-
ular, λ is also finite.

Proof. Let fn ∈ F be a sequence of functions that maximize |f ′(z0)|; that is

lim
n→∞

|f ′n(z0)| = λ.

Since |fn(z)| < 1, by Montel’s theorem there is a subsequence that converges
uniformly on compact sets to a holomorphic function F satisfying |F (z)| ≤ 1,
and F (z0) = 0. Moreover since the derivatives also converge, we must have
|F ′(z0)| = λ 6= 0. In particular, F cannot be a constant. Then by the
maximum modulus principle, |F (z)| < 1 for all z ∈ Ω, since otherwise,
there will be a point z ∈ Ω with |F (z)| = 1, and hence will be an interior
maximum point for |F |. Finally to show that F ∈ F , we need to show that F
is injective. But this follows from Hurwitz’s theorem since F is non-constant
and all fn ∈ F are injective. �

Proof of Riemann mapping. Since F ′(z0) 6= 0, by composing with a
suitable rotation, we can assume that F ′(z0) is real and positive. We claim
that this F is the required bi-holomorphism. We already know that F : Ω→
D, F (z0) = 0 and F is injective. To complete the proof, we need to show
that F is surjective. If not, then there exists a α ∈ D such that F (z) = α
has no solution in Ω. We then exhibit a G ∈ F with |G′(z0)| > |F ′(z0)|
contradicting the choice of F . To do this, consider ψα : D→ D defined by

ψα(w) =
α− z
1− ᾱz

,

and let
g(z) =

√
ψα ◦ F (z).

Since ψα(z) = 0 if and only if z = α, we see that ψα ◦ F is always zero free,
and so a holomorphic branch of logψα ◦ F can be defined since Ω is simply
connected. We can then choose a holomorphic branch for g(z) by letting

g(z) = e
1
2

logψα◦F (z).
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Note that g(z0) =
√
α. To construct a member of the family, we need to

bring this back to the origin, and hence we define

G(z) = ψ√α ◦ g(z).

Then G(z0) = 0. Moreover, G(z) is also injective since ψ√α and g(z) are
injective, and so G ∈ F .

Claim. |G′(z0)| > |F ′(z0)|.

To see this, observe that

F (z) = ψ−1
α ◦ s ◦ ψ−1√

α
◦G(z) = Φ ◦G(z),

where s(w) = w2 is the squaring function and Φ = ψ−1
α ◦ s ◦ ψ−1√

α
: D → D.

We compute that Φ(0) = ψ−1
α (s(ψ−1√

α
(0)) = ψ−1

α (s(
√
α)) = ψ−1

α (α) = 0. By

Schwarz lemma, |Φ(z)| ≤ |z|, and so

|Φ′(0)| ≤ 1.

We claim that |Φ′(0)| < 1. Suppose, |Φ′(0)| = 1, then by the second part of
Schwarz lemma, Φ(z) = az for some unit complex number a. In particular,
Φ(z) is injective. But Φ cannot be injective since s(z) is a 2− 1 function ie.
sends two points to a single point, and ψα and ψ√α are injective. This shows

that |Φ′(0)| < 1. But then F ′(z0) = Φ′(G(z0)) ·G′(z0) = Φ′(0) ·G′(z0), and
hence |F ′(z0)| < |G′(z0)| which proves the claim, and completes the proof
of the theorem.

�

Green’s functions and a generalization of the Riemann
mapping theorem

For the purposes of this section, we assume that Ω is bounded and has a
sufficiently nice boundary ∂Ω (for concreteness, assume that ∂Ω is a union
of piecewise regular curves). Often one is interested in solving the Dirichlet
problem on Ω: Namely, given any smooth (real valued) function f on Ω and
a continuous function u0 on ∂Ω, to find a smooth function u such that{

∆u = f

u
∣∣∣
∂Ω

= u0.

This problem arises in many (seemingly) different areas in mathematics and
physics. For instance, one interpretation of solutions of the above problem,
is that u represents the voltage distribution on a conductor Ω with charge
distribution given by f(z) and the boundary being held at voltage u0.

A Green’s function for Ω based at z0 ∈ Ω is a function Gz0 : Ω→ R such
that

(1) Gz0(z) is a harmonic function on Ω \ {z0}.
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(2) Gz0

∣∣∣
∂Ω
≡ 0.

(3) Gz0(z)− 1
2π log |z − z0| is bounded in a neighbourhood of z0.

Note that log |z − z0| is a harmonic function in a punctured neighbourhood
of z0. By an analog of the Riemann removable singularity theorem for
harmonic functions, condition (3) is equivalent to Gz0(z) − 1

2π log |z − z0|
extending as a harmonic function in a disc Dr(z0). It is often useful to think
of the Green’s function as a function of two variables G : Ω×Ω→ R, where
we set

G(z, w) := Gw(z).

It turns out that the function G is actually symmetric in the two variables.
The reason why Green’s function is important is that it is a fundamental
solution to the Dirichlet problem on Ω. That is, with f and u0 as above, a
solution to the Dirichlet poblem is given by

u(z) =

∫
Ω
G(z, w)f(w) dwdw̄ −

∫
∂Ω

dG

dν
(z, w)g(w) dσ,

where dG/dν is the outward normal derivative of G on the boundary (where
differentiation is with respect to the variable w), dwdw̄ is the usual Lebesgue
(or Euclidean) measure on Ω, and dσ is the surface measure on ∂Ω.

Conversely, if one can Dirichlet problems with continuous data, then one
can construct a Green’s function. The idea is to simply find a harmonic
function Hz0(z) with boundary data u0 = − log |z−z0|. The Green’s function
Gz0(z), will then be

Gz0(z) =
1

2π
log |z − z0|+

1

2π
Hz0(z).

Now suppose that Ω is simply connected. Fix a z0 ∈ Ω, and as above,
let Hz0(z) := 2πGz0(z) − log |z − z0|, which is harmonic by property (3)
above. Since Ω is simply connected, Hz0(z) has a harmonic conjugate, that
is a function H∗z0(z) : Ω → R which is harmonic, and such that f(z) =
Hz0(z)+iH∗z0(z) is a holomorphic function on Ω (The proof is essentially the
same as that for a disc, and this was an exam problem on the midterm). We

let F (z) = (z−z0)ef(z). For any z ∈ ∂Ω, Gz0(z) = 0, Hz0(z) = − log |z−z0|,
and so |F (z)| = 1. By the maximum principle, |F (z)| < 1 for all z ∈ Ω.
Hence F is a map from Ω to the unit disc D. Furthermore, F (z) has only
one zero in Ω, and that too a simple one, namely at z = z0. Next, let w0 ∈ D
such that |w0| < 1 − ε < 1, and let γ be the curve given by |F (z)| = 1 − ε
and Γ = F ◦ γ. Then Γ is of course the circle |w| = 1 − ε (but possibly
traversed multiple times). Since F (z) = 0 has only one solution in Ω, by the
argument principle (rather the index version of it), we see that∫

γ

F ′(z)

F (z)− w0
dz = n(Γ, w0) = n(Γ, 0) =

1

2πi

∫
γ

F ′(z)

F (z)
= 1.
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This shows that F (z) = w0 has a unique solution for any w0 ∈ D, and hence
shows both surjectivity and injectivity of F (z). Finally, we can compose F
with a rotation to ensure that F ′(z0) is real and positive.

The reader is encouraged to read a detailed and complete account of a
proof of the Riemann mapping theorem along the lines of Riemann’s original
“proof” from https://link.springer.com/article/10.1186/s40627-016-0009-7.

We end with a vastly more general Riemann mapping theorem. Recall
that a domain Ω is said to be n-connected, if Ĉ \Ω has n connected compo-
nents. For instance, Ω is 1-connected if and only if it is simply connected.

Theorem 0.6. Let Ω be an n-connected domain in C such that no compo-
nent of Ĉ \Ω consists of a single point. Then there exists a biholomorphism
F : Ω→ D, where

(1) D = D if n = 1,
(2) D is an annulus Ar,R(0) = {z ∈ C | r < |z| < R} if n = 2,

(3) D is Ar,R(0) \ ∪n−2
i=1 Supp(γi) if n > 2, where γi are concentric arcs

lying on circles |ζ| = ri, with r < ri < R.

A historical note. One of the first pushes towards making Dirichlet’s
problem and harmonic functions a part of mainstream mathematics arose
out of Riemann’s (faulty) proof of his theorem on conformal mappings into
the disc. In fact the first systematic and rigorous study of the Dirichlet
problem was to fix the error in Riemann’s original proof. By the turn of the
twentieth century, the vastly more general uniformization theorem had also
been proved using similar methods, and elliptic partial differential equations
and calculus of variations (of which the above problem is the simplest ex-
ample) had become a part of mainstream mathematics. So much so that,
they were the subject of two of Hilbert’s problems in his 1900 address to
the Congress of mathematicians. Finally, this whole circle of ideas of us-
ing solutions of partial differential equations to say something about the
topology continues to be a fruitful area of mathematical research. Some of
the spectacular successes include Hodge theory (characterizing cohomology
groups via harmonic forms) and Donaldson theory (characterising smooth
structures on four manifolds via solving Yang-Mills equations, which are a
non-linear generalization of Dirichlet’s problem).
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