
LECTURE-25

VED V. DATAR∗

In this lecture, we study two important functions, namely the Gamma
function and the Zeta function. Each function is initially defined in a certain
region in the complex plain; the Gamma function by an integral and the Zeta
function by an infinite series. Both the functions are then extended to obtain
meromorphic functions on the entire complex plain. The key techinical tool
is the principal of analytic continuation.

Revisiting the principle of analytic continuation

Recall that the principal of analytic continuation says that if two functions
agree on some open set, then they must agree on the entire connected com-
ponent containing the open set. Given a holomorphic function f : Ω→ C it
is natural to ask for the biggest possible open set Ω′ containing Ω on which
f has a holomorphic extension. It is in fact much more natural to ask for
meromorphic extensions. So we pose the following question.

Question 1. Given f : Ω → C holomorphic, what is the biggest Ω′ con-
taining Ω such that there exists a meromorphic function F : Ω′ → Ĉ such
that

F|Ω = f.

Is the extension unique.

The uniqueness part is answered in the affirmative by the following ex-
tension of the principle of analytic continuation to meromorphic functions.

Lemma 0.1. Let Ω be a connected open set, and f, g : Ω → Ĉ be mero-
morphic functions with poles at isolated sets Sf and Sg respectively. Let
S = Sf∪Sg. Suppose there is a sequence of pairwise distinct points zn ∈ Ω\S
such that zn → z0 ∈ Ω and f(zn) = g(zn) for all n, then Sf = Sg = S, the
poles of f and g are of the same order and the Laurent series expansions
match up, and f = g as meromorphic functions.

Proof. Since f, g ∈ O(Ω\S), by the usual principle of analytic continuation,

f
∣∣∣
Ω\S

= g
∣∣∣
Ω\S

.

To complete the proof, we need to show that Sf = Sg = S. Let p ∈ Sf .
Then there is an ε > 0 such that Dε(p) does not contain any point of S
apart from p. That is, Dε(p) \ {p} ⊂ Ω \ S, and hence f(z) = g(z) for all
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z ∈ Dε(p) \ {p}. Since p is a pole of f , f(z) → ∞ as z → p, and hence
g(z) → ∞ as z → p. This shows that Sf ⊂ Sg. By symmetry we get the
reverse inclusion and this proves that Sf = Sg. Since f and g are equal in
the complement, it is also clear that the poles will be of the same order,
and the Laurent series expansions match up. Hence f = g as meromorphic
functions. �

Example 0.1. Consider the function defined by the power series

f(z) =

∞∑
n=0

zn.

This defines a holomorphic function on the unit disc D. Moreover, by the
summation formula for geometric series, the function is precisely f(z) =
(1−z)−1. On the other hand, the function F (z) = (1−z)−1 is meromorphic
on the entire complex plane with a single pole of order one at z = 1. So F (z)
defines a meromorphic extension of f(z) to C and an analytic continuation
to C \ {1}. Note that F (−1) = 1/2, since F (z) is an analytic continuation
of f(z), naively (and rather thoughtlessly) one might be tempted to plug in
z = −1 in the power series and write

(0.1) 1− 1 + 1− 1 + · · · “ = ”
1

2
.

Of course as stated the above equality is meaningless since the series on the
left is a divergent series. The correct way to make sense out of this is by
analytic continuation. There are other ways to make sense out of the series,
for instance by using Cesaro summability. G.H Hardy wrote an entire book
on divergent series, and this was quite a hot topic for research in Britain in
the early 20th century.

Analytic continuation: The model case

In this section we answer the above question completely in the following
model case, for the (truncated) Mellin transform. Recall that a function
ϕ : [−1, 1]→ R is called smooth, if derivatives of all orders exist on (−1, 1),
and are continuous on [−1, 1].

Theorem 0.1. Let ϕ(t) be a smooth function on the unit interval [−1, 1],
and consider the function

f(z) =

∫ 1

0
xzϕ(x) dx,

where we use the principal branch, namely xz = ez lnx. Then

(1) f(z) defines a holomorphic function on Re(z) > −1.
(2) f(z) admits a unique extension as a meromorphic function on C with

at most simple poles at the negative integers with

Resz=−nf(z) =
ϕ(n−1)(0)

(n− 1)!
,
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where ϕ(k)(0) as usual denotes the kth derivative.

Note that the usual Mellin transform involves the integral over all of
(0,∞), and hence we call the above a truncated Mellin transform (possibly
non standard terminology).

Proof. To prove this, we first show that the integral is absolutely convergent
for Re(z) > −1. We only need to worry about convergence near x = 0. It

is easy to see that |xz| = |ez lnx| = xRe(z), and so if |ϕ(x)| < M on [0, 1],

then |xzϕ(x)| < MxRe(z), which, by the p-test, is integrable near x = 0
if Re(z) > −1. So by the comparison theorem, f(z) is well defined for
Re(z) > −1. To show that it is holomorphic, we look at the difference
quotient. Note that xz is holomorphic for all x ∈ (0, 1) with derivative

dxz

dz
= xz lnx.

We claim

f ′(z) =

∫ 1

0
xzϕ(x) lnx dx.

To prove this, it is enough to show the following.

Claim. For all ε > 0, there exists a δ > 0 such that∣∣∣f(z + h)− f(z)

h
−
∫ 1

0
xzϕ(x) lnx dx

∣∣∣ < ε,

whenever |h| < δ.

Note that∣∣∣f(z + h)− f(z)

h
−
∫ 1

0
xzϕ(x) lnx dx

∣∣∣ =
∣∣∣ ∫ 1

0
(
xz+h − xz

h
− xz lnx)ϕ(x) dx

∣∣∣
≤
∫ 1

0
|xzϕ(x)|

∣∣∣eh lnx − 1

h
− lnx

∣∣∣ dx.(0.2)

By the power series expansion of ez, we have that

eh lnx − 1

h
− lnx = h(lnx)2

∞∑
n=0

hn(lnx)n

(n+ 2)!
.

Now the infinite series on the right is convergent. In fact we have that∣∣∣ ∞∑
n=0

hn(lnx)n

(n+ 2)!

∣∣∣ ≤ ∞∑
n=0

∣∣∣hn(lnx)n

n!

∣∣∣ < e|h|| lnx| = x−|h|,

where we used the fact that | lnx| = ln(1/x) since x ∈ (0, 1). From the
power series expansion above, we then have the estimate∣∣∣eh lnx − 1

h
− lnx

∣∣∣ ≤ h(lnx)2x−|h| ≤ Cηhx−|h|−η,
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for any η > 0 and |h| small. Here Cη is a constant that possibly depends
on η but is independent of h. This estimate holds because limx→0 x

η(log x)2

for any η > 0.
Now suppose M = supx∈[0,1] |ϕ(x)|, then going back to the integral esti-

mate in (0.2) we see that if |h| < Re(z), then∫ 1

0
|xzϕ(x)|

∣∣∣eh lnx − 1

h
− lnx

∣∣∣ dx ≤ hCηM ∫ 1

0
xRe(z)−|h|−η dx.

We choose η > 0 small enough Re(z)− 2η > −1. Suppose |h| < η, then∫ 1

0
xRe(z)−|h|−η dx ≤

∫ 1

0
xRe(z)−2η dx := Aη.

Note thatAη of course depends on z, but z is fixed throughout this argument,
and hence we hide the dependence of Aη on z. So putting all of this together
with (0.2)∣∣∣f(z + h)− f(z)

h
−
∫ 1

0
xzϕ(x) lnx dx

∣∣∣ ≤MAηCη|h| < ε,

if |h| < ε/MCηAη. So the claim is proved by choosing

δ = min
( ε

MCηAη
, η
)
.

Next, we show that a meromorphic extension exists on all of C. For any
given integer N > 0, we can write the Taylor expansion of ϕ around x = 0
as

ϕ(x) =
N−1∑
j=0

ϕj(0)

j!
xj + EN (x),

where EN (x) is a smooth function on [−1, 1] such that |EN (x)| ≤ C|x|N for
some constant C > 0. So for Re(z) > −1,

f(z) =

N−1∑
k=0

∫ 1

0

ϕk(0)

k!
xk+z +

∫ 1

0
EN (x)xz dx

=

N−1∑
k=0

ϕk(0)

k!
· 1

z + k + 1
+

∫ 1

0
EN (x)xz dx

Since |EN (x)| ≤ C|x|N ,
∫ 1

0 EN (x)xz dx is convergent for Re(z + N) > −1,
and hence defines a holomorphic function on Re(z) > −(N + 1) by the first
part. On the other hand, putting k + 1 = j, the first term on the right
defines a meromorphic function on all of C with simple poles at z = −j,
j = 1, 2, · · · , N with residue ϕj−1(0)/(j−1)!. So the right hand side defines
a meromorphic function fN (z) on Re(z) > −(N +1), which restricts to f(z)
on Re(z) > −1. By uniqueness of meromorphic extensions, for M > N , the
restriction of fN and fM to Re(z) > −(N + 1) are equal, and hence letting
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N → ∞, fN converges to a meromorphic function on all of C with simple
poles at z = −n with residue ϕ(n−1)(0)/(n− 1)!. �

Remark 0.1. Note that if ϕ(n−1)(0) = 0 for some n, then the residue of
f(z) at z = −n would be zero. And since z = −n can at most be a simple
pole, this would imply that z = −n is in fact not a pole at all, but is a
removable singularity.

The Gamma function

The Gamma function Γ(s) is defined on Re(s) > 0 as the Mellin transform
of e−x. That is,

Γ(s) =

∫ ∞
0

e−xxs−1 dx.

It is easy to see (exercise!) that the integral is convergent on Re(s) > 0 and
hence is well defined and finite on this region. Note also that Γ(1) = 1.

Theorem 0.2. With Γ(s) defined as above for Re(s) > 0, we have the
following.

(1) There exists a meromorphic extension of Γ(s) on C with simple poles
at s = 0,−1,−2, · · · with residue

Ress=−nΓ(s) =
(−1)n

n!
.

(2) (Functional equation) For s 6= −n, n = 0, 1, 2, · · · ,

Γ(s+ 1) = sΓ(s),

and hence for integers n, Γ(n+ 1) = n!.

Proof. For Re(s) > 0, we can write

Γ(s) =

∫ 1

0
e−xxs−1 dx+

∫ ∞
1

e−xxs−1 dx.

The second integral is convergent for all s, and hence defines an entire func-
tion by similar arguments as in the proof of the first part of Theorem 0.1.
The first integral, by Theorem 0.1 (applied to s − 1 = z), can be extended
to a meromorphic function with simple poles at s = −n, for n = 0, 1, 2, · · · .
The residue also comes from the first term. Applying theorem 0.1 with
ϕ = e−x, and s−1 = z, we see that the residue at s = −n (or z = −(n+ 1))
is given by

Ress=−nΓ(s) =
1

n!
· d

n

dxn

∣∣∣
x=0

e−x =
(−1)n

n!
.
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We first prove part (2) when Re(s) > 0. In this range we can use the
integral formula,

Γ(s+ 1) =

∫ ∞
0

e−xxs dx

= −
∫ ∞

0
xs−1 de−x

= e−xxs
∣∣∣x=∞

x=0
+

∫ ∞
0

e−x dxs

= s

∫ ∞
0

e−xxs−1 dx = sΓ(s).

To prove the equality over the entire complex plane, consider F (s) = Γ(s+
1)− sΓ(s).
Claim. F (s) extends to an entire function.

Assuming this, since F (s) ≡ 0 on Re(s) > 0, by the principle of analytic
continuation, F (s) is identically zero, and we are done.
Proof of the Claim. Clearly F (s) is holomorphic everywhere except pos-
sibly at the negative integers and s = 0. Moreover, F can only have simple
poles at these points. At s = 0, Γ(s + 1) is holomorphic, and so is sΓ(s)
since Γ has a simple pole at s = 0. So F can have pole at only negative
integers. To rule this out, let us calculate the residue. For n ∈ N,

Ress=−nΓ(s+ 1) = Resz=−(n−1)Γ(z) =
(−1)n−1

(n− 1)!
.

On the other hand,

Ress=−nsΓ(s) = lim
s→−n

s(s+ n)Γ(s) = −nRess=−nΓ(s) = − (−1)n

(n− 1)!
,

and hence Ress=−nF (s) = 0. Since s = −n is a simple pole, this implies
that s = −n is a removable singularity. �

Theorem 0.3 (Euler reflection formula). The Gamma function satisfies the
identity

Γ(s)Γ(1− s) =
π

sinπs
.

Proof. By analytic continuation, it enough to prove the identity for s ∈
R ∩ (0, 1). Recall that in Example-2 in Lecture-21, we proved the following
identity: For 0 < a < 1, ∫ ∞

0

v−s

1 + v
dv =

π

sinπs
.

We now rewrite

Γ(1− s) =

∫ ∞
0

e−xx−s dx = t

∫ ∞
0

e−vt(vt)−s dv,
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where we made the change of variables x = vt. Note that the above formula
for Γ(1− s) is valid for all t ≥ 0. Now we compute

Γ(s)Γ(1− s) =

∫ ∞
0

e−tts−1Γ(1− s) dt

=

∫ ∞
0

e−tts−1
(
t1−s

∫ ∞
0

e−vtv−s dv
)
dt

=

∫ ∞
0

∫ ∞
0

e−t(1+v)v−s dt dv

=

∫ ∞
0

v−s

1 + v
dv

=
π

sinπs
.

�

The Zeta function

For Re(s) > 1, we define the zeta function by the infinite series

ζ(s) =

∞∑
n=1

1

ns
,

where as before, ns = es ln (n). This time by comparison test for series,
since |ns| = nRe(s), this is a convergent series for Re(s) > 1, and by the
Weierstrass M -test defines a holomorphic function on Re(s) > 1.

Theorem 0.4. The zeta function above satisfies the following properties

(1) For Re(s) > 1, we have the identity,

ζ(s) =
1

Γ(s)

∫ ∞
0

1

et − 1
ts−1 dt.

That is, the zeta function (upto a factor of Γ(s)) is the Mellin trans-
form of (et − 1)−1.

(2) ζ(s) can be extended to a meromorphic function on C with a simple
pole at z = 1 and holomorphic on C \ {1}. Moreover, we have

Resz=1ζ(s) = 1.

(3) ζ(s) = 0 whenever s = −2n for some n ∈ N. These are the so called
trivial zeroes of the zeta function.

The Riemann hypothesis conjectures that in fact all other zeroes (the so
called non-trivial zeroes) lie on the line Re(s) = 1/2.

Proof. For the first identity, we observe that

Γ(s)

ns
=

1

n

∫ ∞
0

e−x(x/n)s−1 dx =

∫ ∞
0

e−ntts−1 dt.
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where we changed variables x = nt in the second equality. Summing up we
obtain

ζ(s)Γ(s) =

∫ ∞
0

( ∞∑
n=1

e−nt
)
ts−1 dt =

∫ ∞
0

( 1

1− e−t
−1
)
ts−1 dt =

∫ ∞
0

1

et − 1
ts−1 dt.

Now let f(s) =
∫∞

0
1

et−1 t
s−1 dt. We can write

f(s) =

∫ ∞
0

ϕ(t)ts−2,

where ϕ(t) = t/(et − 1). From the Tayor expansion of et we can see that
ϕ(t) is smooth on [−1, 1], and so by Theorem 0.1 with z = s − 2, f(s) is
holomorphic on Re(s− 2) > −1 or equivalently on Re(s) > 1, and admits a
meromorphic extension with simple poles at Re(s) = 1, 0,−1,−2, · · · . But
Γ(s) itself has simple poles at s = 0,−1,−2, · · · , and hence the meromorphic
extension ζ(s) = f(s)/Γ(s) will have a pole only at s = 1. When s = 1,
s− 2 = −1, and so from Theorem 0.1, Ress=1f(s) = ϕ(0). But

t

et − 1
=

t

t+ t2/2 + · · ·
=

1

1 + t/2 + · · ·
,

and so ϕ(0) = 1, and hence Ress=1f(s) = 1. But since Γ(1) = 1, we then
have that Ress=1ζ(s) = 1. It follows from Problem-7 in Assignment-4 that

ϕ(t) =
t

et − 1
= 1− t

2
+
∞∑
n=1

(−1)n−1 Bn
(2n)!

z2n,

where Bn is the nth Bernoulli number. In particular, ϕ(2n+1)(0) = 0, for all
n = 1, 2, · · · , and hence

Ress=−2nf(s) = Resz=−2n−2f(z) =
ϕ(2n+1)

(2n+ 1)!
= 0.

So f(s) has a removable singularity at s = −2n. But since Γ(s) has a simple
pole at s = −2n, it follows that ζ(−2n) = 0 for all n ∈ N. �

Example 0.2. Let us calculate ζ(0). First, note that if two functions f(z)
and g(z) have a simple pole at z = 0, then h(z) = f(z)/g(z) has a removable
singularity at z = 0. Moreover the extension, which we also denote by h(z),
satisfies h(0) = Resz=0f(z)/Resz=0g(z). We apply this to the meromorphic
extension of

f(s) =

∫ ∞
0

1

et − 1
ts−1 dt,

and g(s) = Γ(s). For Re(s) > 1, we re-write

f(s) =

∫ 1

0

t

et − 1
ts−2 dt+

∫ ∞
1

1

et − 1
ts−1 dt.

The second part, by the argument above is an entire function. So the residue
comes from the meromorphic extension of the first integral. We apply The-
orem 0.1 with ϕ(t) = t/(et − 1) and z = s− 2. To find the residue at s = 0
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we apply the second part of Theorem 0.1 (with n = 2, since z = −2 is the
same as s = 0)

Ress=0f(s) =
ϕ′(0)

1!
.

But we can write down the Taylor expansion of

ϕ(t) =
t

et − 1
=

t

t+ t2/2 + · · ·
=

1

1 + t/2 + · · ·
= 1− t

2
+higher order terms,

and so ϕ′(0) = −1/2. On the other hand the residue of the Gamma function
is given by Theorem 0.2, and we see that Ress=0Γ(s) = 1, and putting
everything together, we obtain that

ζ(0) = −1

2
.

Example 0.3. By working a bit harder, we can compute ζ(−1). Once again
applying Theorem 0.1, this time with n = 3 (since s = −1 is z = −3) we
have

Ress=−1f(s) =
ϕ(2)(0)

2!
.

Computing the next term in the Taylor expansion,

ϕ(t) =
1

1 + t/2 + t2/6 +O(t3)
= 1− t

2
− t

2

6
+
t2

4
+O(t3) = 1− t

2
+
t2

12
+O(t3),

and so Ress=−1f(s) = 1/12. On the other hand, Ress=−1Γ(s) = (−1)1/1 =
−1, and hence

ζ(−1) = − 1

12
.

Remark 0.2. Recall that for Re(s) > 1,

ζ(s) =
∞∑
n=0

n−s.

We can then formally (and formally is the key word here) “plug in” s = −1,
and write

(0.3) 1 + 2 + · · · “ = ”ζ(−1) = − 1

12
.

Of course this does not make any “real” sense since 1+2+3 · · · is a divergent
series and ζ(−1) is a finite number since ζ(s) is holomorphic at s = −1.
The equation (0.3) is found in one of Ramanujan’s notebooks. Apparently
Ramanujan had stumbled upon a way of summing up certain divergent series,
and being unaware of analytic continuation, used the rather crude notation
that seems to suggest that the sum of all natural numbers is not only a finite
number but also negative!

There is a particularly misleading video posted by numpherphile, an other-
wise decent youtube math channel, on this “astounding” identity - https: //
www. youtube. com/ watch? v= w-I6XTVZXww , which gives a “derivation” of
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the above “identity” using other misleading identities such as (0.1). Follow-
ing the barrage of criticism that this video received, other channels made bet-
ter videos. For instance this video - https: // www. youtube. com/ watch?

v= jcKRGpMiVTw by mathlogger clarifies the identity using Cesaro summa-
bility. There is also a very beautiful video on the analytic continuation of
the zeta function by 3Blue1Brown - https: // www. youtube. com/ watch?

v= sD0NjbwqlYw .

We end this lecture, with the beautiful functional equation of Riemann’s
which we state without proof.

Theorem 0.5. [Functional equation]

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Example 0.4. As an application we can calculate ζ(2). Namely,

ζ(2) = 4πζ(−1) lim
s→2

sin
(πs

2

)
Γ(1− s).

We can compute the limit directly by using the Residue of Γ(1− s) at s = 2.
Alternately, by Theorem 0.3

sin
(πs

2

)
Γ(1− s) =

sinπs

2 cos(πs/2)
Γ(1− s) =

π

2Γ(s) cosπs/2
,

and so

ζ(2) = − π2

3Γ(2)(−2)
=
π2

6
.

This gives a third derivation of the famous Basel-Euler identity:
∞∑
n=1

1

n2
=
π2

6
,

and is a good place to end.

.
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