LECTURE-25

VED V. DATAR*

In this lecture, we study two important functions, namely the Gamma
function and the Zeta function. Each function is initially defined in a certain
region in the complex plain; the Gamma function by an integral and the Zeta
function by an infinite series. Both the functions are then extended to obtain
meromorphic functions on the entire complex plain. The key techinical tool
is the principal of analytic continuation.

REVISITING THE PRINCIPLE OF ANALYTIC CONTINUATION

Recall that the principal of analytic continuation says that if two functions
agree on some open set, then they must agree on the entire connected com-
ponent containing the open set. Given a holomorphic function f: Q) — C it
is natural to ask for the biggest possible open set ' containing €2 on which
f has a holomorphic extension. It is in fact much more natural to ask for
meromorphic extensions. So we pose the following question.

Question 1. Given f : Q — C holomorphic, what is the biggest € con-
taining  such that there exists a meromorphic function F : Q' — C such
that

Fo =1

Is the extension unique.

The uniqueness part is answered in the affirmative by the following ex-
tension of the principle of analytic continuation to meromorphic functions.

Lemma 0.1. Let Q2 be a connected open set, and f,g : 8 — C be mero-
morphic functions with poles at isolated sets Sy and S, respectively. Let
S = SpUS,. Suppose there is a sequence of pairwise distinct points z, € Q\S
such that z, — 20 € Q0 and f(zn) = g(2n) for all n, then Sy = Sy =S, the
poles of f and g are of the same order and the Laurent series expansions
match up, and f = g as meromorphic functions.

Proof. Since f,g € O(Q2\ S), by the usual principle of analytic continuation,

! ‘Q\S Q\s’
To complete the proof, we need to show that Sy = S, = S. Let p € S;.

Then there is an € > 0 such that D.(p) does not contain any point of S
apart from p. That is, D.(p) \ {p} C 2\ S, and hence f(z) = g(z) for all
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z € D.(p) \ {p}. Since p is a pole of f, f(z) — oo as z — p, and hence
g(z) = o0 as z — p. This shows that Sy C ;. By symmetry we get the
reverse inclusion and this proves that Sy = S;. Since f and g are equal in
the complement, it is also clear that the poles will be of the same order,
and the Laurent series expansions match up. Hence f = g as meromorphic
functions. O

Example 0.1. Consider the function defined by the power series

n=0

This defines a holomorphic function on the unit disc D. Moreover, by the
summation formula for geometric series, the function is precisely f(z) =
(1—2)"L. On the other hand, the function F(z) = (1—2)~! is meromorphic
on the entire complex plane with a single pole of order one at z = 1. So F(z)
defines a meromorphic extension of f(z) to C and an analytic continuation
to C\ {1}. Note that F(—1) = 1/2, since F(z) is an analytic continuation
of f(z), naively (and rather thoughtlessly) one might be tempted to plug in
z = —1 in the power series and write

1
(0.1) 1—1+1—1—|—-~“:”§.
Of course as stated the above equality is meaningless since the series on the
left is a divergent series. The correct way to make sense out of this is by
analytic continuation. There are other ways to make sense out of the series,
for instance by using Cesaro summability. G.H Hardy wrote an entire book
on divergent series, and this was quite a hot topic for research in Britain in
the early 20th century.

ANALYTIC CONTINUATION: THE MODEL CASE

In this section we answer the above question completely in the following
model case, for the (truncated) Mellin transform. Recall that a function
¢ : [-1,1] — R is called smooth, if derivatives of all orders exist on (—1,1),
and are continuous on [—1,1].

Theorem 0.1. Let p(t) be a smooth function on the unit interval [—1,1],
and consider the function

1
1) = /0 v o(x) de,

where we use the principal branch, namely x° = e*™*. Then

(1) f(2) defines a holomorphic function on Re(z) > —1.
(2) f(z) admits a unique extension as a meromorphic function on C with
at most simple poles at the negative integers with

"=1)(0)

Res,——,f(z) = mv
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where %) (0) as usual denotes the k™ derivative.

Note that the usual Mellin transform involves the integral over all of
(0,00), and hence we call the above a truncated Mellin transform (possibly
non standard terminology).

Proof. To prove this, we first show that the integral is absolutely convergent
for Re(z) > —1. We only need to worry about convergence near x = 0. It
is easy to see that |27 = |e*™*| = 2R*(®) and so if |p(z)| < M on [0,1],
then |z%p(z)| < MaR(®) which, by the p-test, is integrable near 2 = 0
if Re(z) > —1. So by the comparison theorem, f(z) is well defined for
Re(z) > —1. To show that it is holomorphic, we look at the difference
quotient. Note that z* is holomorphic for all z € (0,1) with derivative

dx*
dz

=z°lnz.

We claim
1
f'(z) = / x*p(x) Inx dx.
0
To prove this, it is enough to show the following.

Claim. For all € > 0, there exists a § > 0 such that
h) — 1
f(2+ ) f(z) _/ a:zgo(a:)lna?da:’ <e,
0

h

whenever |h| < 4.

Note that
h) — 1 1 z4+h _ .z
=+ })L /(z) —/ x*p(x) lnxdm = ‘/ (u — 2% Inz)p(x) dx‘
0
hlna: _ 1
(0.2) / |x*p(x lnx‘ dz.
By the power series expansion of e?, we have that
hlnzx X 1n n
e -1 h"(Inx)
—Inz=h{nz)2y ——
- nz = h(lnz) nz:O (n+2)
Now the infinite series on the right is convergent. In fact we have that
hn h’l:l'f hn(h'l.%')n \hHlnx| - —|h|
‘ Z (n+2)! ;_:0 n! ‘ < -t

where we used the fact that |Inz| = In(1/z) since = € (0,1). From the
power series expansion above, we then have the estimate
’eh Inx _ 1

- lnx’ < h(lna)2a M < Cyha I,
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for any n > 0 and |h| small. Here C), is a constant that possibly depends
on 7 but is independent of h. This estimate holds because lim,_, 2" (log a:)2
for any n > 0.

Now suppose M = sup,cjo1] |¢()], then going back to the integral esti-
mate in (0.2) we see that if |h| < Re(z), then

hlnx o 1 1
/ B ~Ine|ds < hC’nM/ pFeE)Ih=n gy
0

We choose 1 > 0 small enough Re(z) — 2n > —1. Suppose |h| < 7, then

1 1
/ 2Fel)=Ih=n gy < / P20 g A
0 0

Note that A, of course depends on z, but z is fixed throughout this argument,

and hence we hide the dependence of A, on z. So putting all of this together
with (0.2)

h) — 1
’f(z—k i)z /(z) —/ x*p(x) lnmdm‘ < MA,Cy|h| <,
0
if |h| < e/MCyA,. So the claim is proved by choosing
. €
6 = min (]Wn, 7’]) .

Next, we show that a meromorphic extension exists on all of C. For any
given integer N > (0, we can write the Taylor expansion of ¢ around x = 0
as

x) + En(x),

where Ey(z) is a smooth function [ 1 1] such that |Ey(z)| < Clz|V for
some constant C' > 0. So for Re )

(2
— <>k+z /EN o da

1 1
= . E “d
x z+k+1+/0 ~N(x)2® dx

Since |En ()| < Clz|V, fol En(z)z? dz is convergent for Re(z + N) > —1,
and hence defines a holomorphic function on Re(z) > —(N + 1) by the first
part. On the other hand, putting k£ + 1 = j, the first term on the right
defines a meromorphic function on all of C with simple poles at z = —j,
j=1,2,---, N with residue ©?~1(0)/(j — 1)!. So the right hand side defines
a meromorphic function fy(z) on Re(z) > —(INV +1), which restricts to f(z)
on Re(z) > —1. By uniqueness of meromorphic extensions, for M > N, the
restriction of fy and fis to Re(z) > —(N + 1) are equal, and hence letting
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N — oo, fny converges to a meromorphic function on all of C with simple
poles at z = —n with residue ™~ (0)/(n — 1)!. O

Remark 0.1. Note that if o™ 1(0) = 0 for some n, then the residue of
f(2) at z = —n would be zero. And since z = —n can at most be a simple
pole, this would imply that z = —n is in fact not a pole at all, but is a
removable singularity.

THE GAMMA FUNCTION

The Gamma function I'(s) is defined on Re(s) > 0 as the Mellin transform
of e=*. That is,

F(s):/ e " da.
0

It is easy to see (exercise!) that the integral is convergent on Re(s) > 0 and
hence is well defined and finite on this region. Note also that I'(1) = 1.

Theorem 0.2. With I'(s) defined as above for Re(s) > 0, we have the
following.
(1) There exists a meromorphic extension of I'(s) on C with simple poles
at s=0,—1,-2,--- with residue
—1)"
n!

Ress——_nI'(s) = (
(2) (Functional equation) For s # —n, n=0,1,2,---,
I(s+1)=sI(s),
and hence for integers n, I'(n + 1) = nl.

Proof. For Re(s) > 0, we can write

1 )
I(s) = / e s tdr + / e " da.
0 1

The second integral is convergent for all s, and hence defines an entire func-
tion by similar arguments as in the proof of the first part of Theorem 0.1.
The first integral, by Theorem 0.1 (applied to s — 1 = z), can be extended

to a meromorphic function with simple poles at s = —n, forn =0,1,2,---.
The residue also comes from the first term. Applying theorem 0.1 with
¢ =-e"" and s—1 = z, we see that the residue at s = —n (or z = —(n+1))
is given by
1 d" —x (_1)71
Ress——nl'(s) = 01 Gl omo® =
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We first prove part (2) when Re(s) > 0. In this range we can use the
integral formula,

o0
I(s+1) = / e “zdx
0
oo
= —/ 25t de™®
0
=00 oo
Tt + / e *dx’
=0 0

= s/ e xsHdr = sT(s).
0

=€

To prove the equality over the entire complex plane, consider F'(s) = I'(s +
1) — sI'(s).
Claim. F'(s) extends to an entire function.

Assuming this, since F'(s) = 0 on Re(s) > 0, by the principle of analytic
continuation, F'(s) is identically zero, and we are done.
Proof of the Claim. Clearly F(s) is holomorphic everywhere except pos-
sibly at the negative integers and s = 0. Moreover, F' can only have simple
poles at these points. At s = 0, I'(s + 1) is holomorphic, and so is sI'(s)
since I' has a simple pole at s = 0. So F' can have pole at only negative
integers. To rule this out, let us calculate the residue. For n € N,

(-1
Ress——,I'(s+ 1) = Resz:_(n_nr(z) = W

On the other hand,

Ress=_psI'(s) = lim s(s+n)I'(s) = —nRess=_pI'(s) = — (=1"

sS——n (TL — 1)' ’
and hence Ress—_, F(s) = 0. Since s = —n is a simple pole, this implies
that s = —n is a removable singularity. ([l

Theorem 0.3 (Euler reflection formula). The Gamma function satisfies the
identity
7r

Ls)r'(1—s) =

sinms’
Proof. By analytic continuation, it enough to prove the identity for s €
RN (0,1). Recall that in Example-2 in Lecture-21, we proved the following

identity: For 0 < a < 1,
o ,U—S
/ dv = — T
o 14w SinTs
We now rewrite

I(1l-—s)= / e Pr¥dx = t/ eV (vt) 5 do,
0 0
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where we made the change of variables x = vt. Note that the above formula
for I'(1 — s) is valid for all ¢ > 0. Now we compute

[(s)I'(1—s) = /OOO e TIT(1 - s) dt

:/ e_tts_l(tl_s/ e vty dv) dt
0 0
:/ / e A4, =5 gt dy

o Jo

D ,Ufs

= d
/ol—i—vv

™

sinws’

THE ZETA FUNCTION

For Re(s) > 1, we define the zeta function by the infinite series

o

1
C(S) = Ev
n=1
where as before, n® = e$(") This time by comparison test for series,

since |n®| = nf®(®) this is a convergent series for Re(s) > 1, and by the

Weierstrass M-test defines a holomorphic function on Re(s) > 1.

Theorem 0.4. The zeta function above satisfies the following properties
(1) For Re(s) > 1, we have the identity,

C(s) = ! /Oo LI
CI(s) Jg et—1 ’
That is, the zeta function (upto a factor of T'(s)) is the Mellin trans-
form of (et —1)71.
(2) ((s) can be extended to a meromorphic function on C with a simple
pole at z =1 and holomorphic on C\ {1}. Moreover, we have

Res,=1((s) = 1.

(3) ¢(s) =0 whenever s = —2n for some n € N. These are the so called
trivial zeroes of the zeta function.

The Riemann hypothesis conjectures that in fact all other zeroes (the so
called non-trivial zeroes) lie on the line Re(s) = 1/2.

Proof. For the first identity, we observe that

F 1 [e.9] o0
s) _ / e (z/n)*dr = / e sl dt.
0 0

ns n
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where we changed variables x = nt in the second equality. Summing up we
obtain

> e —nt \ 45— _ > 1 s5— _ > 1 5—
C(S)F(s):/o (;e t)t ldt_/o (1_6%—1)75 ldt_/o St

Now let f(s) = [3~

L_¢s=1 gt We can write

et—1
f(s) = / o,

where ¢(t) = t/(e! —1). From the Tayor expansion of e! we can see that
©(t) is smooth on [—1,1], and so by Theorem 0.1 with z = s — 2, f(s) is
holomorphic on Re(s —2) > —1 or equivalently on Re(s) > 1, and admits a
meromorphic extension with simple poles at Re(s) = 1,0,—1,—-2,---. But
I'(s) itself has simple poles at s = 0, —1,—2, - - -, and hence the meromorphic
extension ((s) = f(s)/I'(s) will have a pole only at s = 1. When s = 1,
s —2 = —1, and so from Theorem 0.1, Res;—; f(s) = ¢(0). But

t t 1

1t £2/24 - 1+t/2+4

and so ¢(0) = 1, and hence Ress—1 f(s ) = 1. But since I'(1) = 1, we then
have that Ress=1((s) = 1. It follows from Problem-7 in Assignment-4 that

B,
1 2
=Gy =1 +Z AT

where B, is the n'" Bernoulli number. In particular, cp(2"+1)(0) = 0, for all
n=1,2,---, and hence

(2n+1)

¥ _
Ress:72nf( ) Res;=—on— Qf( ) (2n T 1) =0
So f(s) has a removable singularity at s = —2n. But since I'(s) has a simple
pole at s = —2n, it follows that ((—2n) =0 for all n € N. O

Example 0.2. Let us calculate ((0). First, note that if two functions f(z)
and g(z) have a simple pole at z = 0, then h(z) = f(2)/g(z) has a removable
singularity at z = 0. Moreover the extension, whzch we also denote by h(z),
satisfies h(0) = Res,—of(z)/Res,—og(z). We apply this to the meromorphic

extension of
o0
1
= ——— 571t
f(s) /0 71 :

and g(s) =T'(s). For Re(s) > 1, we re-write

Ly ) 1 .
= t572 dt — 57 dt.
/) /oet—l +/1 o1

The second part, by the argument above is an entire function. So the residue

comes from the meromorphic extension of the first integral. We apply The-

orem 0.1 with p(t) =t/(e! — 1) and z = s — 2. To find the residue at s =0
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we apply the second part of Theorem 0.1 (with n = 2, since z = —2 is the
same as s =0)

/
0
Ress—of(s) = 901(' )
But we can write down the Taylor expansion of
t t 1 t
t) = = = = 1——+high der t
olt) et —1 t+83/24+-- 1+4t/2+--- 2+ ter oracr terms,

and so ¢'(0) = —1/2. On the other hand the residue of the Gamma function
is given by Theorem 0.2, and we see that Ress—oI'(s) = 1, and putting
everything together, we obtain that

Example 0.3. By working a bit harder, we can compute ((—1). Once again
applying Theorem 0.1, this time with n = 3 (since s = —1 is z = —3) we

have o
2
0
Ress—_1f(s) = 7 2'( )
Computing the next term in the Taylor expansion,
1 t 2 2 t t?
t)= =l—c——4+—4O0) =1—=4+—4+0(£3
)= TR 0@ 2 g T o) SRATRRGR

and so Ress—_1f(s) = 1/12. On the other hand, Ress—_1T'(s) = (—1)}/1 =

—1, and hence

1
((-1) = TR
Remark 0.2. Recall that for Re(s) > 1,
C(s) = Z n-°.
n=0

We can then formally (and formally is the key word here) “plug in” s = —1,
and write

1
(0.3) 1+2+"'“:”C(_1):_E-
Of course this does not make any “real” sense since 1+2+3--- is a divergent
series and ((—1) is a finite number since ((s) is holomorphic at s = —1.

The equation (0.3) is found in one of Ramanujan’s notebooks. Apparently
Ramanujan had stumbled upon a way of summing up certain divergent series,
and being unaware of analytic continuation, used the rather crude notation
that seems to suggest that the sum of all natural numbers is not only a finite
number but also negative!

There is a particularly misleading video posted by numpherphile, an other-
wise decent youtube math channel, on this “astounding” identity - https: //
www. youtube. com/watch?v=w-I6XTVZXww, which gives a “derivation” of
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the above “identity” using other misleading identities such as (0.1). Follow-
ing the barrage of criticism that this video received, other channels made bet-
ter videos. For instance this video - https: //www. youtube. com/ watch?
v=5cKRGpMiVTw by mathlogger clarifies the identity using Cesaro summa-
bility. There is also a very beautiful video on the analytic continuation of
the zeta function by 3BluelBrown - https: //www. youtube. com/ watch?
v=sDONjbwqlYw.

We end this lecture, with the beautiful functional equation of Riemann’s
which we state without proof.

Theorem 0.5. [Functional equation]
((s) = 2°7°sin (%S>F(1 —$)¢(1—s).
Example 0.4. As an application we can calculate ((2). Namely,
s
— 47¢(~1) lim si <—)F 1-3).

¢(2) = 4r¢(~1) limysin ()T (1~ 5)
We can compute the limit directly by using the Residue of T'(1—s) at s = 2.
Alternately, by Theorem 0.3

sin (%S)I‘(l —s) =

sinms (1 — 5) T
T pp gy
2 cos(ms/2) 21'(s) cosws/2’

and so

2 2

2 = - = —,
<2 3(2)(—2) 6
This gives a third derivation of the famous Basel-Euler identity:

9 T a0
=n 6

and is a good place to end.
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