
LECTURE-4

VED V. DATAR∗

1. The exponential and trigonometric functions

Last lecture, we defined the complex exponential function by the power
series

exp(z) :=

∞∑
n=0

zn

n!
.

We saw that the power series has infinite radius of convergence, and hence
defines a function on the entire complex plain. In fact by the theorem from
last lecture, we now know that the exponential function is holomorphic on
the entire plane. Such functions, that are holomorphic on the entire complex
plane, are called entire functions. As we saw in the previous lecture, to find
the complex derivative, it is enough to differentiate term-wise:

d

dz
exp(z) =

∞∑
n=0

1

n!

d

dz
zn =

∞∑
n=1

zn−1

(n− 1)!
=
∞∑
n=0

zn

n!
.

To see the last equality just replace n− 1 by n in the penultimate term. So
we see that

d

dz
exp(z) = exp(z).

In fact we’ll see later that this property characterizes the exponential func-
tion. But first, we collect some important properties of the exponential
function.

Theorem 1.1. (1) exp(0) = 1.
(2) For any complex numbers z, w we have that

exp(z + w) = exp(z) exp(w),

and in particular exp(−z) = [exp(z)]−1.
(3) exp(z) 6= 0 for all z ∈ C.
(4) The restriction of exp(z) to R is a positive strictly increasing func-

tion. In particular, for x ∈ R, ex = 1 if and only if x = 0. Moreover,
limx→∞ exp(x) =∞ and limx→−∞ exp(x) = 0.

Proof. (1) This is trivial from the definition.
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(2) This follows from the product formula for power series and the bi-
nomial theorem. The left hand side of the equation is

exp(z + w) =
∞∑
n=0

(z + w)n

n!
.

But then

(z + w)n

n!
=

1

n!

n∑
k=0

n!

k!(n− k)!
zkwn−k =

n∑
k=0

zk

k!
· wn−k

(n− k)!
.

This is exactly the nth coefficient of the Cauchy product, and the
result follows.

(3) Suppose exp(p) = 0 for some p ∈ C. Since f(z) = exp(z) is an
analytic function with an infinite radius of convergence at 0, we also
have the following representation formula on all of C:

exp(z) =
∞∑
n=0

f (n)(p)

n!
(z − p)n.

But since f (n)(p) = exp(p) = 0 for all n, this would mean that
exp(z) = 0 for all z, clearly contradicting (1).

(4) Since exp(z) 6= 0 and exp(0) = 1, by the intermediate value the-
orem the function f(x) = exp(x) defined on R is strictly positive.
Moreover, since f(0) = 1 and f ′(x) = ex > 0, the function f(x)
is strictly increasing, and hence f(x) > 1 for all x > 0. Then by
the mean value theorem f(x) − 1 > x for all x > 0. From this
it follows that limx→∞ f(x) = ∞. Then property (2) implies that
limx→−∞ f(x) = 0.

�

Remark 1.1. Due to property (2) and our familiarity with working with
exponents from high-school, from now one we adopt the more suggestive
notation exp(z) = ez.

Theorem 1.2. There is a unique holomorphic function f : C→ C satisfying{
f ′(z) = f(z)

f(0) = 1.

Proof. The proof uses the fact that if a holomorphic function has complex
derivative identically zero, then the function has to be a constant. We will
prove this fact later in the course. Assuming this, consider the function

g(z) = e−zf(z).

Then by the Chain rule, since f ′(z) = f(z) we see that

g′(z) = e−z(−f(z) + f ′(z)) = 0.
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Hence g(z) is a constant. But by the initial condition we see that g(0) = 1.
On the other hand by the first property in Theorem 1.1, e−z = 1/ exp(z),
and so f(z) = exp(z). �

1.1. Trigonometric functions. We can now analogously define the func-
tions sine and cosine using power series:

cos z =
∞∑
m=0

(−1)m
z2m

(2m)!

sin z =

∞∑
m=0

(−1)m
z2m+1

(2m+ 1)!

It is easy to check that the radius of convergence of both the power series
is infinity, and hence they define entire functions, just like the exponential
function. In fact an easy computation also shows that

d

dz
cos z = − sin z,

d

dz
sin z = cos z.

The same computation then gives the following generalized Euler identity.

Proposition 1.1 (Generalized Euler identity). For any z ∈ C,

eiz = cos z + i sin z.

Proof. This follows trivially from the following observations:

in =

{
(−1)m, n = 2m

(−1)mi, n = 2m+ 1.

So then by definition

eiz =

∞∑
n=0

inzn

n!
=
∞∑
m=0

(−1)m
z2m

(2m)!
+ i

∞∑
m=0

(−1)m
z2m+1

(2m+ 1)!
.

Euler’s identity then follows from the observation that the two series on the
right are simply the Maclaurin series for sine and cosine respectively. �

Remark 1.2. Polar coordinates. The Euler identity can be used to give a
third representation of complex numbers in terms of the exponential function.
Namely, for z ∈ C, let r = |z| and θ = arg z. Then we have seen that

z = r cos θ + ir sin θ.

So by the Euler identity, we have the representation

z = reiθ.

This is sometimes very useful in computations.

Next, we collect some properties of the sine and cosine functions. These
can be proved using the generalized Euler identity, and the analogous prop-
erties of the exponential function.

Theorem 1.3. The sine and cosine function satisfy the following.
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(1) sin(0) = 0, cos(0) = 1, and for all z ∈ C we have

sin(−z) = − sin z and cos(−z) = cos(z).

(2) For z, w ∈ C,

sin (z ± w) = sin z cosw ± cos z sinw

cos (z ± w) = cos z cosw ∓ sin z sinw.

(3) For all z ∈ C,

sin2 z + cos2 z = 1.

Proof. (1) This follows easily from the definitions.
(2) It follows from the definition and property (1) above that

sin z =
eiz − e−iz

2i
, and cos z =

eiz + e−iz

2
.

The sum-angle fomrulae then follow from this and property (2) in
Theorem 1.1.

(3) This follows from the sum angle properties and property (1) above.
An independent proof can be given by observing that the derivative
of f(z) = sin2 z + cos2 z is identically zero, hence f(z) is a constant
function, and hence equal to f(0) = 1.

�

One can also define the other trigonmetric functions tan z, cot z, sec z and
csc z in the usual way.

1.2. Periodicity and the definition of π.

Theorem 1.4. There exists a smallest positive real number π such that

e2πi = 1. Moreover, eiz = 1 if and only if z = 2nπ for some n ∈ Z.

As an immediate consequence of the above theorem and Euler’s identity,
we have the following.

Corollary 1.1. For all z ∈ C and all n ∈ Z,

ez+2nπi = exp(z), sin(z + 2nπ) = sin(z), and cos(z + 2nπ) = cos z.

In particular,

sin(2nπ) = cos
(2n+ 1

2
π
)

= 0

for all n.

Proof of Theorem 1.4. We first prove that there exists a real number τ
such that eiτ = 1. To see this, note that by property (3) above, −1 ≤
sin(x), cos(x) ≤ 1 for all x ∈ R. Then by the mean value theorem, it is easy
to see that for all x > 0,

sinx < x, and cosx > 1− x2

2
.
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Once again by an application of the mean value theorem, since (sinx)′ =
cos(x) > 1− x2/2, we see that

sin(x) > x− x3

6
.

Finally, by yet another application of the mean value theorem we obtain

cosx < 1− x2

2
+
x4

24
,

for all x > 0. Putting x =
√

3, we see that cos
√

3 < 0, and hence by the
intermediate value theorem, there exists a x0 ∈ (0,

√
3) such that cos(x0) =

0. Let τ = 4x0. Then by the sum, angle formulae, cos(τ) = 1 and sin(τ) = 0,
and hence by the Euler identity, eiτ = 1.

Next, we argue that any period of eiz has to be a real number. For, note
that if p ∈ C is a period, that is if eiz+ip = eiz for all z ∈ C, then eip = 1.
But then, if p = a+ ib, then 1 = |eip| = e−b, and so by part(4) in Theorem
1.1, we see that b = 0, or that p has to be real.

Finally, we show that any period is an integral multiple of τ . We first
show that τ is the smallest positive period. To see this, note that if 0 < x <
x0(<

√
3), then

sinx > x
(

1− x2

6

)
>
x

2
> 0.

Since (cosx)′ = − sinx, this shows that cosx is strictly decreasing in [0, x0].
Then from the identity sin2 x+ cos2 x = 1, since sinx > 0, we see that sinx
is strictly increasing in [0, x0]. In particular, 0 < sinx < 1, and eix 6= ±1
or ±i. Hence e4ix 6= 1, and τ is indeed the smallest positive period. Now,
if p is any other period of eiz, then we can write p/τ = n+ c, where n ∈ Z
and c ∈ [0, 1). Then 1 = eip = eiτc. By our discussion above, if c > 0, then
τc ≥ τ , which is a contradiction. Hence c = 0, and p is an integral multiple
of τ . The proof of the theorem is complete with π := τ/2. �

The logarithm function and complex powers

For functions of one real variable, the logarithm is the inverse function
of the exponential function. We would like to generalize this to complex
numbers. In particular, we would like to have a definition for logarithm that
makes it a holomorphic function. An immediate difficulty is that while on
real line, the exponential function is strictly increasing, and hence one-one,
on the complex plane, we have already seen that the exponential function
is not one-one. For instance e0 = e2πin = 1 for all n ∈ Z. So to define an
inverse function, one has to make a choice of the pre-image. For instance,
we can choose to log 1 = 0 or indeed any of 2πin, for n = 1, 2, 3, · · · .

In fact, writing in polar coordinates z = reiθ, f(z) satisfies ef(z) =
f(exp(z)) = z on any open connected set if and only if

f(z) = log r + iθ + 2πin, n = 0, 1,−1, 2,−2, · · · .
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That is, we can at best define logarithm as multivalued function. A choice
of n corresponds to defining a single valued logarithm, the corresponding
function is called a branch of the logarithm. For instance, choosing n = 0,
and defining

log z = log r + iθ,

picks out what is called as the principal branch of the logarithm. This might
seem like a good definition until we realize that the logarithm so defined is
not even continuous. To see this, suppose z → −1 from the 2nd quadrant.
Then log z will tend to iπ. But on the other hand, as z → −1 from the
third quadrant, log z will tend to −π. This is not only a minor irritant
that can be fixed by some trick, but as we will see later in the course, is
a fundamental issue. In fact, we will see that there is actually no way to
define a holomorphic logarithm on which is defined on all of C \ {0}. The
best we can do is to define it outside of a ray. In fact we have the following.

Theorem 1.5. The function

log z := log |z|+ i arg z

defines a holomorphic function on C \Re(z) ≤ 0 satisfying elog z = z. More-
over, applying chain rule, we see that

d

dz
log z =

1

z
.

We will see a proof of this later in the course. The logarithm function
then has the property that log 1 = 0 and

log zw = log z + logw,

assuming it is defined at all those points.

Logarithm as power series. Since e0 = 1, and definition of logarithm
must satisfy log 1 = 0. Let’s see if we can have a definition of logarithm using
power series centered at z0 = 1. By the chain rule, if have a holomorphic
function log z near z0 = 1, then

d

dz
log z =

1

z
.

Iteratively, we must have

dn

dzn

∣∣∣
z=1

log z = (−1)n−1(n− 1)!.

If log z has a power series expansion around z0 = 1, then the coefficients
must be given by

an =
1

n!

dn

dzn

∣∣∣
z=1

log z = (−1)n−1
1

n
.

Turning this around, we consider the power series

L(z) =

∞∑
n=1

(−1)n−1

n
(z − 1)n.
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We then have the following

Proposition 1.2. The holomorphic function L(z) : D1(1)→ C satisfies

L(z) = log z,

where log z is the principal branch of the logarithm on C \Re(z) ≤ 0 defined
above.

Proof. We already know that d log z/dz = 1/z for the principal branch of
the logarithm. Also, L(1) = log 1 = 0. So, similar to the above proof, all
we need to show (modulo the theorem on identically zero derivatives to be
covered later) is that L′(z) = 1/z. Since F (z) is a power series, by term-wise
differentiation,

L′(z) =

∞∑
n=1

(−1)n−1(z − 1)n−1 =

∞∑
n=0

(−1)n(z − 1)n.

From the geometric series expansion, we know that for |w| < 1,
∞∑
n=0

wn =
1

1− w
.

Putting w = 1− z (we can do this since |z − 1| < 1) in the above expansion

1

z
=

∞∑
n=0

(1− z)n =

∞∑
n=0

(−1)n(z − 1)n = L′(z).

�

Complex powers. Once logarithm is defined, one can also define the pow-
ers of complex to other complex numbers by the simple formula

zw = ew log z.

Example 1.1. The nth roots. If n is an integer, then en log z = (elog z)n =
zn, and hence the new definition of complex powers agrees with our usual
definition of integer powers of complex numbers.
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