
LECTURE-7

VED V. DATAR∗

1. Theorems of Cauchy and Goursat

In the previous lecture, we saw that if f has a primitive in an open set,
then ∫

γ
f dz = 0

for all closed curves γ in the domain. This was a simple application of
the fundamental theorem of calculus. It is somewhat remarkable, that in
many situations the converse also holds true. In the next few lectures we
will explore this theme, and prove theorems that will form the basis of all
that we will accomplish in the rest of the course. The starting point is the
following.

Theorem 1.1 (Cauchy). Let D be a disc in the complex plane. If f : D → C
is holomorphic, then ∫

γ
f dz = 0

for all closed curves γ contained in D.

We will prove this, by showing that all holomorphic functions in the disc
have a primitive. The key technical result we need is Goursat’s theorem.

Theorem 1.2 (Goursat). Let Ω ⊂ C be an open subset, and T ⊂ Ω be a
triangle contained inside Ω. If f : Ω→ C is holomorphic, then∫

T
f(z) dz = 0.

Remark 1.1. Relation to Green’s theorem. If F = P i+Qj is a vector
field, such that P and Q have continuous first partials, then for any close
curve ∫

R
(Qx − Py) dx dy =

∫
∂R
P dx+Qdy.

Now, suppose that f = u + iv and that u and v have continuous partials.
Then ∫

γ
f dz =

∫
γ
(u dx− v dy) + i

∫
γ
(u dy + v dx).
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Consider the vector fields (P1, Q1) = (u,−v) and (P2, Q2) = (v, u). Then
for each j = 1, 2, by the Cauchy Riemann equations

∂Qj
∂x

=
∂Pj
∂y

.

Then by Green’s theorem, the line integral is zero. The key point is our as-
sumption that u and v have continuous partials, while in Cauchy’s theorem
we only assume holomorphicity which only guarantees the existence of the
partial derivatives. Later in the course, we will in fact show that holomor-
phicity implies continuous partials (actually infinite differentiability) as a
consequence of Cauchy’s theorem.

2. Proof of Cauchy’s theorem assuming Goursat’s theorem

Cauchy’s theorem follows immediately from the theorem below, and the
fundamental theorem for complex integrals.

Theorem 2.1. Let f : D → C be a holomorphic function. Then f(z) has a
primitive on D.

Proof. We first observe that By translation, we can assume without loss of
generality that the disc D is centered at the origin. For any points z, w ∈ C,
we denote by lz,w the straight line segment from z to w. For any z = (x, y) ∈
D, let γz denote the path from the origin to z consisting of a horizontal
segment from 0 to (x, 0) followed by a vertical segment from (x, 0) to (x, y).
We then define

F (z) =

∫
γz

f(w) dw,

and claim that F (z) is holomorphic with F ′(z) = f(z). To see this, first
note that if z1 = (x, 0), then for any small h ∈ R,∫
γz+h

f(w) dw−
∫
γz

f(w) dw =

∫
lz1,z1+h

f(w) dw+

∫
lz1+h,z+h

f(w) dw−
∫
lz1,z

f(w) dw.

On the other hand, by Theorem 1.2,∫
lz1,z1+h

f(w) dw +

∫
lz1+h,z+h

f(w) dw +

∫
lz+h,z

f(w) dw +

∫
lz,z1

f(w) dw = 0,

and so we have the key identity:

(2.1) F (z + h)− F (z) =

∫
lz,z+h

f(w) dw.

Intuitively, if |h| << 1, then f(w) ≈ f(z) on lz,z+h, and so the integral is
approximately f(z)h. To make this rigorous, we write∫

lz,z+h

f(w) dw =

∫
lz,z+h

f(z) dw +

∫
lz,z+h

(f(w)− f(z)) dw

= f(z)h+

∫
lz,z+h

(f(w)− f(z)) dw,
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and so

F (z + h)− F (z)

h
= f(z) +

1

h

∫
lz,z+h

(f(w)− f(z)) dw.

Dividing by h and using triangle inequality,∣∣∣F (z + h)− F (z)

h
−f(z)

∣∣∣ =
∣∣∣1
h

∫
lz,z+h

(f(w)−f(z)) dw
∣∣∣ ≤ 1

|h|

∫
lz,z+h

|f(w)−f(z)| |dw|.

By the continuity of f , given any ε > 0 there exists a δ such that if |h| < δ,
then for all w ∈ lz,z+h

|f(w)− f(z)| ≤ ε.

Using this in the above estimate, and remembering that length(lz,z+h) = |h|
we see that ∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣ ≤ ε,
so long as |h| ≤ δ. This shows that

∂F

∂x
(z) := lim

h→0

F (z + h)− F (z)

h
= f(z),

Next, consider a path σz consisting of a vertical line segment from 0 to iy
followed by a horizontal segment from iy to z. By Theorem 1.2,

F (z) =

∫
σz

f(w) dw.

By an argument similar to the one above, we can prove that ∂F/∂y exists,
and that

∂F

∂y
(z) = lim

k→0

f(z + ik)− f(z)

k
= if(z).

The analog of the key identity is that

F (z + ik)− F (z) =

∫
lz,z+ik

f(w) dw,

which is approximately if(z)k. (integrating in the vertical direction incurs
an i). In any case, this shows that the partials of F exist and are continuous,
and hence F is a (totally) differentiable map from D to R2. On the other
hand, since

∂F

∂y
(z) = i

∂F

∂x
(z),

the partials also satisfy the Cauchy-Riemann equations. Hence F is complex
differentiable at z, and moreover, F ′(z) = f(z). �
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3. Proof of Goursat’s theorem

We first prove the theorem assuming f is holomorphic on all of Ω. The
proof consists of choosing a nested sequence of rectangles R(n) starting with
R(0) = R. Note that when we say triangle we mean the one-dimensional
object, and not the region inside the triangle. Suppose we have already
constructed the triangle R(n−1). The first step in the construction of R(n) is
to bisect each side ofR(n−1). This results in four new triangles which we label

R
(n−1)
1 , R

(n−1)
2 , R

(n−1)
3 and R

(n−1)
4 . We also give them the an orientation

consistent with the original triangle (see figure) so that the integrals over
the common boundaries cancel, and we have that∫

R(n−1)

f(z) dz =
4∑
j=1

∫
R

(n−1)
j

f(z) dz.

By triangle inequality,∣∣∣ ∫
R(n−1)

f(z) dz
∣∣∣ ≤ 4∑

j=1

∣∣∣ ∫
R

(n−1)
j

f(z) dz
∣∣∣,

and so for at least one triangle R
(n−1)
j ,∣∣∣ ∫

R(n−1)

f(z) dz
∣∣∣ ≤ 4

∣∣∣ ∫
R

(n−1)
j

f(z) dz
∣∣∣.

Choose any one such triangle, and label it R(n). The inductively, we will
have ∣∣∣ ∫

R
f(z) dz

∣∣∣ ≤ 4n
∣∣∣ ∫

R(n)

f(z) dz
∣∣∣.(3.2)

Recall that the diameter of a subset of C is the maximum distance between
any two points in that subset. We then have the following elementary ob-
servation.

Lemma 3.1. If d(n) and p(n) denote the diameter and perimeter of the
triangle R(n) respectively, then

d(n) = 2−nd(0), and p(n) = 2−np(0).

Moreover, there exists a unique p ∈ ∩R(n).

Proof. The diameter of a rectangle is the maximum over the distances be-

tween the vertices, and hence equal to the diagonal length.. SinceR
(n−1)
1 ,R

(n−1)
2 ,

R
(n−1)
3 and R

(n−1)
4 are all congruent rectangles with side lengths that are half

of the side lengths of R(n−1), clearly d(n) = 2−1d(n−1) and p(n) = 2−1p(n−1),
and we obtain the result by induction. Now, let xn ∈ R(n) be any point.
Then since the sequence {xn} is contained in R(0), a compact subset, there

exists a limit point p ∈ R(0). �
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Continuing with the proof of Goursat’s theorem, since f is holomorphic
at z = p, we can write

f(z) = f(p) + f ′(p)(z − p) + ψ(z)(z − p),

where ψ(z) → 0 as z → p. Now the constant function f(p) and the linear
function f ′(p)(z−p) both have primitives; f(p)z and f ′(p)(z−p)2/2 respec-

tively. So by the fundamental theorem, their line integrals on R(n) are zero.
So ∫

R(n)

f(z) dz =

∫
R(n)

ψ(z)(z − p) dz.

Now since d(n) → 0 as n→∞, given any ε > 0 there exists a n such that

|ψ(z)| < ε

on R(n). But then∣∣∣ ∫
R(n)

f(z) dz
∣∣∣ ≤ ε sup

R(n)

|z − p|p(n) = εd(n)p(n) ≤ 4−nεd(0)p(0).

Then by the inequality in (3.2)∣∣∣ ∫
R
f(z) dz

∣∣∣ ≤ εd(0)p(0),
which can be made arbitrarily small, since d(0) and p(0) are fixed. Hence∫
R f(z) dz = 0, and this proves the theorem in the case that f is holomorphic

everywhere.

4. Extension of Cauchy’s and Goursat’s theorems to
punctured domains

For applications, we need a slightly stronger version of Cauchy’s theorem,
which in turn relies on a slightly stronger version of Goursat’s theorem. For
any open set Ω ⊂ C, and any p ∈ Ω we denote Ω∗p := Ω \ {p}.

Theorem 4.1. Let D be a disc, and p ∈ D. Let f : D∗p → C be a holomor-
phic function such that limz→p(z − p)f(z) = 0. Then for any closed curve
γ ⊂ D∗p, ∫

γ
f(z) dz = 0.

As before, the kye technical input is a version of the theorem for rectan-
gles.

Theorem 4.2. Let Ω be any open subset of C. For some p ∈ Ω, let f :
Ω∗p → C be a holomorphic function satisfying limz→p(z − p)f(z) = 0. Then
for any rectangle R ⊂ Ω with p not on the boundary for the triangle,∫

∂R
f(z) dz = 0.
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Proof. Let ε > 0, and let δ > 0 such that

|f(z)| ≤ ε

|z − p|
,

whenever |z − p| < δ. Let R0 be a small square of side length δ with p at
it’s centre. Note that |z − p| > δ/2 for all z ∈ ∂R. By extending the sides
of R0, divide R into nine rectangles R0, · · · , R8. Clearly∫

Rj

f(z) dz = 0

for j = 1, 2, · · · , 8 by Theorem 1.2. Since the integrals over the common
boundaries cancel out if we choose the correct (ie. anti-clockwise) orienta-
tions ∫

R
f(z) dz =

∫
R0

f(z) dz.

Next, we estimate the integral over R0,∣∣∣ ∫
∂R0

f(z) dz
∣∣∣ ≤ ε∫

∂R0

|dz|
|z − p|

<
2ε

δ
len(∂R0) = 8ε.

Since ε is arbitrary, this shows that
∫
∂R f(z) dz = 0.

�

Proof of Theorem 4.1. The idea of the proof is to again show that f(z) has
a primitive on D∗p, and we proceed as in the proof of Theorem 2.1. Let
p = (a, b). Pick a point z0 = (x0, y0) such that x0 6= a and y0 6= b. Let
z + (x, y) ∈ D∗p. If x 6= a, we let γz0,z be the path consisting of the line
segment (x0, y0) to (x, y0), followed by a vertical line from (x, y0) to (x, y).
On the other hand, if x = a, then we let γz0,z consist of three segments - A
vertical segment from (x0, y0) to (x0, yη) followed by a horizontal segment
from (x0, yη) to (x, yη) followed by another vertical segment from (x, yη) to
(x, y). We then define F : D∗p → C by

F (z) =

∫
γz0,z

f(w) dw.

First, we claim that ∂F/∂x = f(z) for every z ∈ D∗p. Note that the key step
in the proof of Theorem 2.1 is to obtain the identity (2.1). We obtain the
same identity in this new situation. Let h ∈ R be a small number. If x 6= a,
then the same argument as before will imply that ∂F/∂x exists at (x, y) and
equals f(z). So suppose x = a. Let R be the rectangle with vertices z0,
(a+ h, y0), (a+ h, yη) and (x0, yη) and let R′ be the rectangle with vertices
(a, yη), (a+ h, yη), z + h = (a+ h, y) and z = (a, y). Note that p lies either
in the interior or the exterior of R (but not on the boundary), and so by
Theorem 1.2 or Theorem 4.2,∫

∂R
f(w) dw = 0.
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On the other hand, p lies in the exterior of R′, and so by Theorem (1.2),∫
∂R′

f(w) dw = 0.

It is easy to check that

F (z + h)− F (z) =

∫
lz,z+h

f(w) dw.

Now the argument proceeds exactly as in the proof of Theorem 2.1. Next,
as before, one proves that ∂F/∂y exists everywhere on D∗p and equals if(z)
using a suitable modification of the path σ.

�
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