
LECTURE-8

VED V. DATAR∗

Cauchy integral formula and Analyticity of holomorphic
functions

The main consequence of Cauchy’s theorem for the punctured disc is the
following fundamental result that will be a basis of everything that follows
in the course.

Theorem 1 (Cauchy integral formula (CIF)). Let f : Ω→ C be a holomor-

phic function. If Dr(z0) ⊂ Ω, then for any z ∈ Dr(z0),

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ.

Proof. For a fixed z ∈ DR(z0), we define hz : D∗ := DR(z0) \ {z} → C by

hz(ζ) =
f(ζ)− f(z)

ζ − z
.

Clearly hz is holomorphic in D∗. Also limζ→z(ζ − z)hz(ζ) = 0, since f is
holomorphic, and hence continuous at z. Then by Cauchy’s theorem

0 =
1

2πi

∫
|ζ−z0|=r

hz(ζ) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ − f(z)

( 1

2πi

∫
|ζ−z0|=r

1

ζ − z
dζ
)

=
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ − f(z),

since the quantity in the bracket is simply n(C, z), where C = ∂Dr(z0),
which is equal to 1 because z ∈ Dr(z0). �

An immediate consequence of the Cauchy integral formula is that holo-
morphic functions are analytic

Theorem 2. Let Ω ⊂ C open, and f : Ω→ C a holomorphic function. Then
f is analytic. Moreover, if DR(z0) is any disc whose closure is contained in
Ω, then for all z ∈ DR(z0), f(z) =

∑∞
n=0 an(z − z0)n, where

(0.1) an =
1

2πi

∫
|ζ−z0|=R

f(ζ)

(ζ − z0)n+1
dζ.

In particular, holomorphic functions are infinitely complex differentiable.
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Proof. By CIF, if D is a of radius R centered at a with boundary circle CR,
then for any z ∈ D,

f(z) =
1

2πi

∫
|ζ−a|=R

f(ζ)

ζ − z
dz.

Writing ζ − z = (ζ − z0)− (z − z0), we see that

1

ζ − z
=

1

ζ − z0

(
1− z − z0

ζ − z0

)−1
.

For z ∈ D and ζ ∈ CR, |z− z0| < R = |ζ− z0|, or equivalently |(z− z0)/(ζ−
z0)| < 1, and hence using the geometric series

1

ζ − z
=

1

ζ − z0

∞∑
n=0

(z − z0

ζ − z0

)n
.

Since power series converge uniformly, we can also integrate term-wise (see
Appendix), we get that

2πif(z) =

∫
CR

f(ζ)

ζ − z0

∞∑
n=0

(z − z0

ζ − z0

)n
dζ

=
∞∑
n=0

∫
CR

f(ζ)

(ζ − z0)n+1
dζ · (z − z0)n

= 2πi
∞∑
n=0

an(z − z0)n,

where an is given by the formula (0.1), and this completes the proof of
the theorem. Infinite complex differentiability follows from analyticity by
Corollary 1.1 from Lecture-3. �

As an immediate corollary, we have the following versions of the principle
of analytic continuation for holomorphic functions.

Corollary 1. Let f : Ω → C be a holomorphic function, and suppose Ω is
connected.

(1) If there exists a p ∈ Ω such that f (n)(p) = 0 for n = 1, 2, · · · , then f
is a constant function.

(2) If there exists a n open subset U such that f
∣∣∣
U
≡ 0, then f

∣∣∣
Ω
≡ 0.

This follows immediately from Theorem 2 above and Corollary 1.2 from
Lecture-4. Another important consequence of the analyticity is the following
criteria for holomorphicity.

Corollary 2 (Morera). Any continuous function on an open set Ω that
satisfies ∫

∂R
f(z) dz = 0

for all rectangular regions R ⊂ Ω, is holomorphic.
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Proof. Let p ∈ Ω and r > 0 such that Dr(p) ⊂ Ω. The given condition is
equivalent to f having a primitive Fp(z) on Dr(p), essentially by the proof
of Theorem 2.1 in Lecture-7. Note that continuity of f is crucial for this.
But then by Theorem 2, F ′p(z) = f(z) is also holomorphic on Dr(p). In
particular, f is complex differentiable at p. Since this is true for all p ∈ Ω,
f ∈ O(Ω). �

Cauchy integral formula for derivatives

Let f : Ω → C be holomorphic. Then by Theorem 2, the nth complex
derivative f (n)(z) exists for all z ∈ Ω. Moreover, by equation (0.1), for any
z ∈ Ω,

f (n)(z) =
n!

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dζ,

where r > 0 such that Dr(z0) ⊂ Ω. More generally, just as for the Cauchy
integral formula, one can obtain a similar formula for fn(z0) where the
integral is over a circle centred at possibly a point other than z0.

Theorem 3 (Cauchy integral formula for derivatives). If D is a disc with
boundary C whose closure is contained in Ω, then for any z ∈ D, we have

(0.2) f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ.

Remark 1. Essentially what this theorem says is that one can differentiate
the Cauchy integral formula, and take the derivative inside the integral.

Proof. Since f(z) is analytic in the neighborhood of any point z ∈ Ω, it is au-
tomatically holomorphic in Ω. To prove the formula (0.2) we use induction.
For n = 0, this is simply the Cauchy integral formula.

f (n−1)(z)− f (n−1)(z0)

z − z0
=

(n− 1)!

2πi(z − z0)

∫
C
f(ζ)

( 1

(ζ − z)n
− 1

(ζ − z0)n

)
dζ

=
(n− 1)!

2πi

∫
C
f(ζ) · (ζ − z0)n−1 + · · ·+ (ζ − z)n−1

(ζ − z)n(ζ − z0)n
dζ

=
(n− 1)!

2πi

∫
C

f(ζ)

(ζ − z0)n

n−1∑
k=0

(ζ − z0)k

(ζ − z)k+1
dζ.

Suppose D = DR(p), and suppose |f(ζ)| < M on C. By choosing z suffi-
ciently close to z0, we can ensure that for all ζ ∈ C,

|ζ − z| > (R− |z0 − p|)/2 := λ(z0).

Also, trivially, |ζ − z|, |ζ − z0| < 2R and |ζ − z0| > λ(z0). Then for any
k < n,∣∣∣ (ζ − z0)k

(ζ − z)k+1
− 1

ζ − z0

∣∣∣ =
|z − z0|(|ζ − z|k + · · · |ζ − z0|k)

|ζ − z|k+1|ζ − z0|
< n|z−z0|

( 2R

λ(z0)

)n+2
.
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Hence, given any ε > 0, there exists a δ = δ(n,R,M, z0) > 0 such that for
any |z − z0| < δ, and any ζ ∈ C, we have∣∣∣ f(ζ)

(ζ − z0)n
(ζ − z0)k

(ζ − z)k+1
− f(ζ)

(ζ − z0)n+1

∣∣∣ < ε.

uniformly in the sense that the rate of convergence is independent of ζ. So
if |z − z0| < δ, then for each k,∣∣∣(n− 1)!

2πi

∫
C

f(ζ)

(ζ − z0)n
(ζ − z0)k

(ζ − z)k+1
dζ−(n− 1)!

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ
∣∣∣ ≤ (n−1)!Rε,

and hence

lim
z→z0

(n− 1)!

2πi

∫
C

f(ζ)

(ζ − z0)n
(ζ − z0)k

(ζ − z)k+1
dζ =

(n− 1)!

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ.

Summing up over k, we see that

f (n)(z0) =
n!

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ.

�

An extremely useful consequence is the following estimate on the deriva-
tives of a holomorphic function.

Corollary 3. Let f be a holomorphic function in an open set containing
the closure of a disc DR(z0). If we denote the boundary of the disc by C,
then for any z ∈ DR(z0),

|f (n)(z)| ≤ n!R

(R− |z − z0|)n+1
||f ||C ,

where ||f ||C := supζ∈C |f(ζ)|. In particular,

f (n)(z0) ≤ n!

Rn
||f ||C ,

Proof. By CIF for derivatives, we have that

f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ.

Applying the triangle inequality, and remembering that on C, |ζ − z| ≥
R− |z − z0|,

|f (n)(z)| ≤ n!

2π

∫
C

∣∣∣ |f(ζ)|
|ζ − z|n+1

∣∣∣ |dζ|
≤ n!

2π(R− |z − z0|)n+1
sup
C
|f(ζ)| · len(C)

=
n!R

(R− |z − z0|)n+1
||f ||C .

�
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Liouville Theorem

Recall that an entire function is a function that is holomorphic on the
entire complex plane C. We then have the following surprising fact.

Theorem 4 (Liouville). There are no bounded non-constant entire func-
tions.

Proof of Theorem 4. Let f(z) be a bounded entire function. We show that
it then has to be a constant. Suppose |f(ζ)| < M for all ζ ∈ C, and let
z ∈ C be an arbitrary point. Since f is entire, it is holomorphic on any disc
DR(z). Denoting the boundary by CR, by the estimate above,

|f ′(z)| ≤ ||f ||CR

R
<
M

R
.

Letting R→∞ the right hand side approaches zero, and hence f ′(z) = 0 for
all z ∈ C. Since C is connected, this forces f(z) to be a constant, completing
the proof of Liouville’s theorem. �

Remark 2. More generally, we can show that an entire function f(z) sat-
isfying

|f(z)| ≤M(1 + |z|α),

for some constants M,α > 0 and all z ∈ C, has to be a polynomial of degree
at most bαc, where b·c is the usual floor function. We leave this as an
exercise.
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