LECTURE-8

VED V. DATAR*

Cauchy integral formula and Analyticity of holomorphic FUNCTIONS

The main consequence of Cauchy's theorem for the punctured disc is the following fundamental result that will be a basis of everything that follows in the course.

Theorem 1 (Cauchy integral formula (CIF)). Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. If $\overline{D_{r}\left(z_{0}\right)} \subset \Omega$, then for any $z \in D_{r}\left(z_{0}\right)$,

$$
f(z)=\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Proof. For a fixed $z \in D_{R}\left(z_{0}\right)$, we define $h_{z}: D^{*}:=D_{R}\left(z_{0}\right) \backslash\{z\} \rightarrow \mathbb{C}$ by

$$
h_{z}(\zeta)=\frac{f(\zeta)-f(z)}{\zeta-z}
$$

Clearly h_{z} is holomorphic in D^{*}. Also $\lim _{\zeta \rightarrow z}(\zeta-z) h_{z}(\zeta)=0$, since f is holomorphic, and hence continuous at z. Then by Cauchy's theorem

$$
\begin{aligned}
0=\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} h_{z}(\zeta) & =\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\zeta-z} d \zeta-f(z)\left(\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} \frac{1}{\zeta-z} d \zeta\right) \\
& =\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\zeta-z} d \zeta-f(z),
\end{aligned}
$$

since the quantity in the bracket is simply $n(C, z)$, where $C=\partial D_{r}\left(z_{0}\right)$, which is equal to 1 because $z \in D_{r}\left(z_{0}\right)$.

An immediate consequence of the Cauchy integral formula is that holomorphic functions are analytic

Theorem 2. Let $\Omega \subset \mathbb{C}$ open, and $f: \Omega \rightarrow \mathbb{C}$ a holomorphic function. Then f is analytic. Moreover, if $D_{R}\left(z_{0}\right)$ is any disc whose closure is contained in Ω, then for all $z \in D_{R}\left(z_{0}\right), f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, where

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=R} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta \tag{0.1}
\end{equation*}
$$

In particular, holomorphic functions are infinitely complex differentiable.
Date: 24 August 2016.

Proof. By CIF, if D is a of radius R centered at a with boundary circle C_{R}, then for any $z \in D$,

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta-a|=R} \frac{f(\zeta)}{\zeta-z} d z
$$

Writing $\zeta-z=\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)$, we see that

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-z_{0}}\left(1-\frac{z-z_{0}}{\zeta-z_{0}}\right)^{-1} .
$$

For $z \in D$ and $\zeta \in C_{R},\left|z-z_{0}\right|<R=\left|\zeta-z_{0}\right|$, or equivalently $\mid\left(z-z_{0}\right) /(\zeta-$ $\left.z_{0}\right) \mid<1$, and hence using the geometric series

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n}
$$

Since power series converge uniformly, we can also integrate term-wise (see Appendix), we get that

$$
\begin{aligned}
2 \pi i f(z) & =\int_{C_{R}} \frac{f(\zeta)}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n} d \zeta \\
& =\sum_{n=0}^{\infty} \int_{C_{R}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta \cdot\left(z-z_{0}\right)^{n} \\
& =2 \pi i \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n},
\end{aligned}
$$

where a_{n} is given by the formula (0.1), and this completes the proof of the theorem. Infinite complex differentiability follows from analyticity by Corollary 1.1 from Lecture-3.

As an immediate corollary, we have the following versions of the principle of analytic continuation for holomorphic functions.
Corollary 1. Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function, and suppose Ω is connected.
(1) If there exists a $p \in \Omega$ such that $f^{(n)}(p)=0$ for $n=1,2, \cdots$, then f is a constant function.
(2) If there exists a n open subset U such that $\left.f\right|_{U} \equiv 0$, then $\left.f\right|_{\Omega} \equiv 0$.

This follows immediately from Theorem 2 above and Corollary 1.2 from Lecture-4. Another important consequence of the analyticity is the following criteria for holomorphicity.

Corollary 2 (Morera). Any continuous function on an open set Ω that satisfies

$$
\int_{\partial R} f(z) d z=0
$$

for all rectangular regions $R \subset \Omega$, is holomorphic.

Proof. Let $p \in \Omega$ and $r>0$ such that $\overline{D_{r}(p)} \subset \Omega$. The given condition is equivalent to f having a primitive $F_{p}(z)$ on $D_{r}(p)$, essentially by the proof of Theorem 2.1 in Lecture-7. Note that continuity of f is crucial for this. But then by Theorem 2, $F_{p}^{\prime}(z)=f(z)$ is also holomorphic on $D_{r}(p)$. In particular, f is complex differentiable at p. Since this is true for all $p \in \Omega$, $f \in \mathcal{O}(\Omega)$.

CAUCHY INTEGRAL FORMULA FOR DERIVATIVES

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Then by Theorem 2, the $n^{\text {th }}$ complex derivative $f^{(n)}(z)$ exists for all $z \in \Omega$. Moreover, by equation (0.1), for any $z \in \Omega$,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta,
$$

where $r>0$ such that $\overline{D_{r}\left(z_{0}\right)} \subset \Omega$. More generally, just as for the Cauchy integral formula, one can obtain a similar formula for $f^{n}\left(z_{0}\right)$ where the integral is over a circle centred at possibly a point other than z_{0}.

Theorem 3 (Cauchy integral formula for derivatives). If D is a disc with boundary C whose closure is contained in Ω, then for any $z \in D$, we have

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta . \tag{0.2}
\end{equation*}
$$

Remark 1. Essentially what this theorem says is that one can differentiate the Cauchy integral formula, and take the derivative inside the integral.

Proof. Since $f(z)$ is analytic in the neighborhood of any point $z \in \Omega$, it is automatically holomorphic in Ω. To prove the formula (0.2) we use induction. For $n=0$, this is simply the Cauchy integral formula.

$$
\begin{aligned}
\frac{f^{(n-1)}(z)-f^{(n-1)}\left(z_{0}\right)}{z-z_{0}} & =\frac{(n-1)!}{2 \pi i\left(z-z_{0}\right)} \int_{C} f(\zeta)\left(\frac{1}{(\zeta-z)^{n}}-\frac{1}{\left(\zeta-z_{0}\right)^{n}}\right) d \zeta \\
& =\frac{(n-1)!}{2 \pi i} \int_{C} f(\zeta) \cdot \frac{\left(\zeta-z_{0}\right)^{n-1}+\cdots+(\zeta-z)^{n-1}}{(\zeta-z)^{n}\left(\zeta-z_{0}\right)^{n}} d \zeta \\
& =\frac{(n-1)!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n}} \sum_{k=0}^{n-1} \frac{\left(\zeta-z_{0}\right)^{k}}{(\zeta-z)^{k+1}} d \zeta .
\end{aligned}
$$

Suppose $D=D_{R}(p)$, and suppose $|f(\zeta)|<M$ on C. By choosing z sufficiently close to z_{0}, we can ensure that for all $\zeta \in C$,

$$
|\zeta-z|>\left(R-\left|z_{0}-p\right|\right) / 2:=\lambda\left(z_{0}\right)
$$

Also, trivially, $|\zeta-z|,\left|\zeta-z_{0}\right|<2 R$ and $\left|\zeta-z_{0}\right|>\lambda\left(z_{0}\right)$. Then for any $k<n$,

$$
\left|\frac{\left(\zeta-z_{0}\right)^{k}}{(\zeta-z)^{k+1}}-\frac{1}{\zeta-z_{0}}\right|=\frac{\left|z-z_{0}\right|\left(|\zeta-z|^{k}+\cdots\left|\zeta-z_{0}\right|^{k}\right)}{|\zeta-z|_{3}^{k+1}\left|\zeta-z_{0}\right|}<n\left|z-z_{0}\right|\left(\frac{2 R}{\lambda\left(z_{0}\right)}\right)^{n+2}
$$

Hence, given any $\varepsilon>0$, there exists a $\delta=\delta\left(n, R, M, z_{0}\right)>0$ such that for any $\left|z-z_{0}\right|<\delta$, and any $\zeta \in C$, we have

$$
\left|\frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n}} \frac{\left(\zeta-z_{0}\right)^{k}}{(\zeta-z)^{k+1}}-\frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}}\right|<\varepsilon
$$

uniformly in the sense that the rate of convergence is independent of ζ. So if $\left|z-z_{0}\right|<\delta$, then for each k,
$\left|\frac{(n-1)!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n}} \frac{\left(\zeta-z_{0}\right)^{k}}{(\zeta-z)^{k+1}} d \zeta-\frac{(n-1)!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta\right| \leq(n-1)!R \varepsilon$,
and hence

$$
\lim _{z \rightarrow z_{0}} \frac{(n-1)!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n}} \frac{\left(\zeta-z_{0}\right)^{k}}{(\zeta-z)^{k+1}} d \zeta=\frac{(n-1)!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta
$$

Summing up over k, we see that

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta .
$$

An extremely useful consequence is the following estimate on the derivatives of a holomorphic function.

Corollary 3. Let f be a holomorphic function in an open set containing the closure of a disc $D_{R}\left(z_{0}\right)$. If we denote the boundary of the disc by C, then for any $z \in D_{R}\left(z_{0}\right)$,

$$
\left|f^{(n)}(z)\right| \leq \frac{n!R}{\left(R-\left|z-z_{0}\right|\right)^{n+1}}\|f\|_{C}
$$

where $\|f\|_{C}:=\sup _{\zeta \in C}|f(\zeta)|$. In particular,

$$
f^{(n)}\left(z_{0}\right) \leq \frac{n!}{R^{n}}\|f\|_{C}
$$

Proof. By CIF for derivatives, we have that

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

Applying the triangle inequality, and remembering that on $C,|\zeta-z| \geq$ $R-\left|z-z_{0}\right|$,

$$
\begin{aligned}
\left|f^{(n)}(z)\right| & \leq \frac{n!}{2 \pi} \int_{C}\left|\frac{|f(\zeta)|}{|\zeta-z|^{n+1}}\right||d \zeta| \\
& \leq \frac{n!}{2 \pi\left(R-\left|z-z_{0}\right|\right)^{n+1}} \sup _{C}|f(\zeta)| \cdot \operatorname{len}(C) \\
& =\frac{n!R}{\left(R-\left|z-z_{0}\right|\right)^{n+1}}\|f\|_{C}
\end{aligned}
$$

Liouville Theorem

Recall that an entire function is a function that is holomorphic on the entire complex plane \mathbb{C}. We then have the following surprising fact.

Theorem 4 (Liouville). There are no bounded non-constant entire functions.

Proof of Theorem 4. Let $f(z)$ be a bounded entire function. We show that it then has to be a constant. Suppose $|f(\zeta)|<M$ for all $\zeta \in \mathbb{C}$, and let $z \in \mathbb{C}$ be an arbitrary point. Since f is entire, it is holomorphic on any disc $D_{R}(z)$. Denoting the boundary by C_{R}, by the estimate above,

$$
\left|f^{\prime}(z)\right| \leq \frac{\|f\|_{C_{R}}}{R}<\frac{M}{R} .
$$

Letting $R \rightarrow \infty$ the right hand side approaches zero, and hence $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$. Since \mathbb{C} is connected, this forces $f(z)$ to be a constant, completing the proof of Liouville's theorem.

Remark 2. More generally, we can show that an entire function $f(z)$ satisfying

$$
|f(z)| \leq M\left(1+|z|^{\alpha}\right),
$$

for some constants $M, \alpha>0$ and all $z \in \mathbb{C}$, has to be a polynomial of degree at most $\lfloor\alpha\rfloor$, where $\lfloor\cdot\rfloor$ is the usual floor function. We leave this as an exercise.

* Department of Mathematics, Indian Institute of Science

Email address: vvdatar@iisc.ac.in

