LECTURE-8

VED V. DATAR*

CAUCHY INTEGRAL FORMULA AND ANALYTICITY OF HOLOMORPHIC FUNCTIONS

The main consequence of Cauchy's theorem for the punctured disc is the following fundamental result that will be a basis of everything that follows in the course.

Theorem 1 (Cauchy integral formula (CIF)). Let $f : \Omega \to \mathbb{C}$ be a holomorphic function. If $\overline{D_r(z_0)} \subset \Omega$, then for any $z \in D_r(z_0)$,

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Proof. For a fixed $z \in D_R(z_0)$, we define $h_z : D^* := D_R(z_0) \setminus \{z\} \to \mathbb{C}$ by

$$h_z(\zeta) = \frac{f(\zeta) - f(z)}{\zeta - z}$$

Clearly h_z is holomorphic in D^* . Also $\lim_{\zeta \to z} (\zeta - z) h_z(\zeta) = 0$, since f is holomorphic, and hence continuous at z. Then by Cauchy's theorem

$$0 = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} h_z(\zeta) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \left(\frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{1}{\zeta - z} d\zeta\right)$$
$$= \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z),$$

since the quantity in the bracket is simply n(C, z), where $C = \partial D_r(z_0)$, which is equal to 1 because $z \in D_r(z_0)$.

An immediate consequence of the Cauchy integral formula is that holomorphic functions are analytic

Theorem 2. Let $\Omega \subset \mathbb{C}$ open, and $f : \Omega \to \mathbb{C}$ a holomorphic function. Then f is analytic. Moreover, if $D_R(z_0)$ is any disc whose closure is contained in Ω , then for all $z \in D_R(z_0)$, $f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$, where

(0.1)
$$a_n = \frac{1}{2\pi i} \int_{|\zeta - z_0| = R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

In particular, holomorphic functions are infinitely complex differentiable.

Date: 24 August 2016.

Proof. By CIF, if D is a of radius R centered at a with boundary circle C_R , then for any $z \in D$,

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta - a| = R} \frac{f(\zeta)}{\zeta - z} \, dz.$$

Writing $\zeta - z = (\zeta - z_0) - (z - z_0)$, we see that

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \left(1 - \frac{z - z_0}{\zeta - z_0} \right)^{-1}.$$

For $z \in D$ and $\zeta \in C_R$, $|z - z_0| < R = |\zeta - z_0|$, or equivalently $|(z - z_0)/(\zeta - z_0)| < 1$, and hence using the geometric series

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n.$$

Since power series converge uniformly, we can also integrate term-wise (see Appendix), we get that

$$2\pi i f(z) = \int_{C_R} \frac{f(\zeta)}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n d\zeta$$
$$= \sum_{n=0}^{\infty} \int_{C_R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n$$
$$= 2\pi i \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

where a_n is given by the formula (0.1), and this completes the proof of the theorem. Infinite complex differentiability follows from analyticity by Corollary 1.1 from Lecture-3.

As an immediate corollary, we have the following versions of the principle of analytic continuation for holomorphic functions.

Corollary 1. Let $f : \Omega \to \mathbb{C}$ be a holomorphic function, and suppose Ω is connected.

- (1) If there exists a $p \in \Omega$ such that $f^{(n)}(p) = 0$ for $n = 1, 2, \dots$, then f is a constant function.
- (2) If there exists a n open subset U such that $f\Big|_U \equiv 0$, then $f\Big|_\Omega \equiv 0$.

This follows immediately from Theorem 2 above and Corollary 1.2 from Lecture-4. Another important consequence of the analyticity is the following criteria for holomorphicity.

Corollary 2 (Morera). Any continuous function on an open set Ω that satisfies

$$\int_{\partial R} f(z) \, dz = 0$$

for all rectangular regions $R \subset \Omega$, is holomorphic.

Proof. Let $p \in \Omega$ and r > 0 such that $\overline{D_r(p)} \subset \Omega$. The given condition is equivalent to f having a primitive $F_p(z)$ on $D_r(p)$, essentially by the proof of Theorem 2.1 in Lecture-7. Note that continuity of f is crucial for this. But then by Theorem 2, $F'_p(z) = f(z)$ is also holomorphic on $D_r(p)$. In particular, f is complex differentiable at p. Since this is true for all $p \in \Omega$, $f \in \mathcal{O}(\Omega)$.

CAUCHY INTEGRAL FORMULA FOR DERIVATIVES

Let $f : \Omega \to \mathbb{C}$ be holomorphic. Then by Theorem 2, the n^{th} complex derivative $f^{(n)}(z)$ exists for all $z \in \Omega$. Moreover, by equation (0.1), for any $z \in \Omega$,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, d\zeta,$$

where r > 0 such that $\overline{D_r(z_0)} \subset \Omega$. More generally, just as for the Cauchy integral formula, one can obtain a similar formula for $f^n(z_0)$ where the integral is over a circle centred at possibly a point other than z_0 .

Theorem 3 (Cauchy integral formula for derivatives). If D is a disc with boundary C whose closure is contained in Ω , then for any $z \in D$, we have

(0.2)
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

(->

,

Remark 1. Essentially what this theorem says is that one can differentiate the Cauchy integral formula, and take the derivative inside the integral.

Proof. Since f(z) is analytic in the neighborhood of any point $z \in \Omega$, it is automatically holomorphic in Ω . To prove the formula (0.2) we use induction. For n = 0, this is simply the Cauchy integral formula.

$$\frac{f^{(n-1)}(z) - f^{(n-1)}(z_0)}{z - z_0} = \frac{(n-1)!}{2\pi i (z - z_0)} \int_C f(\zeta) \left(\frac{1}{(\zeta - z)^n} - \frac{1}{(\zeta - z_0)^n}\right) d\zeta$$
$$= \frac{(n-1)!}{2\pi i} \int_C f(\zeta) \cdot \frac{(\zeta - z_0)^{n-1} + \dots + (\zeta - z)^{n-1}}{(\zeta - z)^n (\zeta - z_0)^n} d\zeta$$
$$= \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z_0)^n} \sum_{k=0}^{n-1} \frac{(\zeta - z_0)^k}{(\zeta - z)^{k+1}} d\zeta.$$

Suppose $D = D_R(p)$, and suppose $|f(\zeta)| < M$ on C. By choosing z sufficiently close to z_0 , we can ensure that for all $\zeta \in C$,

$$|\zeta - z| > (R - |z_0 - p|)/2 := \lambda(z_0).$$

Also, trivially, $|\zeta - z|, |\zeta - z_0| < 2R$ and $|\zeta - z_0| > \lambda(z_0)$. Then for any k < n,

$$\left|\frac{(\zeta-z_0)^k}{(\zeta-z)^{k+1}} - \frac{1}{\zeta-z_0}\right| = \frac{|z-z_0|(|\zeta-z|^k + \dots + |\zeta-z_0|^k)}{|\zeta-z|^{k+1}||\zeta-z_0|} < n|z-z_0| \left(\frac{2R}{\lambda(z_0)}\right)^{n+2}$$

Hence, given any $\varepsilon > 0$, there exists a $\delta = \delta(n, R, M, z_0) > 0$ such that for any $|z - z_0| < \delta$, and any $\zeta \in C$, we have

$$\left|\frac{f(\zeta)}{(\zeta-z_0)^n}\frac{(\zeta-z_0)^k}{(\zeta-z)^{k+1}}-\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}\right|<\varepsilon.$$

uniformly in the sense that the rate of convergence is independent of ζ . So if $|z - z_0| < \delta$, then for each k,

$$\left|\frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta-z_0)^n} \frac{(\zeta-z_0)^k}{(\zeta-z)^{k+1}} \, d\zeta - \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} \, d\zeta\right| \le (n-1)! R\varepsilon$$
and hence

$$\lim_{z \to z_0} \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta-z_0)^n} \frac{(\zeta-z_0)^k}{(\zeta-z)^{k+1}} \, d\zeta = \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} \, d\zeta.$$

Summing up over k, we see that

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, d\zeta.$$

An extremely useful consequence is the following estimate on the derivatives of a holomorphic function.

Corollary 3. Let f be a holomorphic function in an open set containing the closure of a disc $D_R(z_0)$. If we denote the boundary of the disc by C, then for any $z \in D_R(z_0)$,

$$|f^{(n)}(z)| \le \frac{n!R}{(R-|z-z_0|)^{n+1}} ||f||_C,$$

where $||f||_C := \sup_{\zeta \in C} |f(\zeta)|$. In particular,

$$f^{(n)}(z_0) \le \frac{n!}{R^n} ||f||_C,$$

Proof. By CIF for derivatives, we have that

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} \, d\zeta.$$

Applying the triangle inequality, and remembering that on C, $|\zeta - z| \ge R - |z - z_0|$,

$$\begin{split} |f^{(n)}(z)| &\leq \frac{n!}{2\pi} \int_C \left| \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} \right| |d\zeta| \\ &\leq \frac{n!}{2\pi (R - |z - z_0|)^{n+1}} \sup_C |f(\zeta)| \cdot \operatorname{len}(C) \\ &= \frac{n!R}{(R - |z - z_0|)^{n+1}} ||f||_C. \end{split}$$

LIOUVILLE THEOREM

Recall that an *entire* function is a function that is holomorphic on the entire complex plane \mathbb{C} . We then have the following surprising fact.

Theorem 4 (Liouville). *There are no bounded non-constant entire functions.*

Proof of Theorem 4. Let f(z) be a bounded entire function. We show that it then has to be a constant. Suppose $|f(\zeta)| < M$ for all $\zeta \in \mathbb{C}$, and let $z \in \mathbb{C}$ be an arbitrary point. Since f is entire, it is holomorphic on any disc $D_R(z)$. Denoting the boundary by C_R , by the estimate above,

$$|f'(z)| \le \frac{||f||_{C_R}}{R} < \frac{M}{R}.$$

Letting $R \to \infty$ the right hand side approaches zero, and hence f'(z) = 0 for all $z \in \mathbb{C}$. Since \mathbb{C} is connected, this forces f(z) to be a constant, completing the proof of Liouville's theorem.

Remark 2. More generally, we can show that an entire function f(z) satisfying

$$|f(z)| \le M(1+|z|^{\alpha}),$$

for some constants $M, \alpha > 0$ and all $z \in \mathbb{C}$, has to be a polynomial of degree at most $\lfloor \alpha \rfloor$, where $\lfloor \cdot \rfloor$ is the usual floor function. We leave this as an exercise.

* DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE *Email address*: vvdatar@iisc.ac.in