Complex Analysis: Assignment-1
 (due January 21, 2020)

Note. Submit solutions to $2,5,6,7(c), 8$. Two or three randomly chosen questions will be graded. And there will be five points for completion of the assignment.

1. Find all possible solutions to the following equations:
(a) $z^{4}=i+1$.
(b) $z^{n}=1$.
2. Determine all values of $2^{i}, i^{i}$ and $(-1)^{2 i}$.
3. For what values of z is e^{z} equal to $2, i / 2$?
4. Show that there are complex numbers z satisfying

$$
|z-a|+|z+a|=2|c|
$$

if and only if $|a| \leq|c|$. If this condition is satisfied, what are the smallest and largest values of $|z|$.
5. (a) Let $z, w \in \mathbb{C}$ such that $z \bar{w} \neq 1$. Then prove that if $|z|,|w|<1$, then

$$
\left|\frac{w-z}{1-z \bar{w}}\right|<1
$$

Moreover

$$
\left|\frac{w-z}{1-z \bar{w}}\right|=1
$$

if and only if either $|z|=1$ or $|w|=1$.
(b) Now, fix a $w \in \mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\}$, and consider the mapping $\phi_{w}: \mathbb{D} \rightarrow \mathbb{C}$,

$$
\phi_{w}(z):=\frac{w-z}{1-z \bar{w}} .
$$

Prove that ϕ_{w} has the following properties:

1. ϕ_{w} is a holomorphic map of \mathbb{D} into itself.
2. ϕ_{w} interchanges 0 and w. That is, $\phi_{w}(0)=w$ and $\phi_{w}(w)=0$.
3. ϕ_{w} is a biholomorphism. Hint. Compute $\phi_{w} \circ \phi_{w}$.
4. Prove that $f(z)$ is holomorphic if and only if $\overline{f(\bar{z})}$ is holomorphic. How are the two complex derivatives related?
5. Find the radius of convergence of the following power series.
(a) $\sum_{n=1}^{\infty}(\log n)^{2} z^{n}$.
(b) $\sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!} z^{n}$.
(c) The Bessel function:

$$
J_{r}(z)=\left(\frac{z}{2}\right)^{r} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+r)!}\left(\frac{z}{2}\right)^{2 n} .
$$

8. For what values of $z \in \mathbb{C}$ is the series

$$
\sum_{n=0}^{\infty}\left(\frac{z}{1+z}\right)^{n}
$$

convergent. In the regions that the series does converge, is it absolutely and/or uniformly convergent?

